

1

Understanding wCK module and

C programming with RoboBuilder

RoboBuilder Co., Ltd.

2

- TITLE –
1. Overview.. 3

1.1 Introduction ... 3

1.2 Structure .. 4

1.3 Requirement .. 5

2. Understanding wCK... 6

2.1 Change wCK ID .. 6

2.2 Change various wCK Parameters ... 9

2.3 PID Gain Tuning and wCK Response Feature ...10

2.4 wCK Free Motion Programming...17

3. RBC Firmware Study for User Created Robot..22

3.1 Firmware and C Program ...22

3.2 RBC Hardware Structure and I/O MAP ..25

3.3 C Programming with Motion File ..27

3.4 RBC LED Control – Understanding RBC I/O ...30

3.5 Control wCK Position – 8 Bit Command Communication ..34

3.6 Control wCK LED ...38

3.7 Configure wCK Parameters - Configure Command and Read Data42

3.8 C Programming with Motion File ..46

3.9 IR Remote Controller with C Programming...52

3.10 Humanoid Robot Maze Escape ..55

4. C Program Summary...61

4.1 Variables ..61

4.2 Operators ..62

4.3 Control Statement ..64

4.4 Functions ...66

4.5 Arrays and Pointers ...67

4.6 Structure ..68

Appendix A. wCK Communication Protocol...70

3

1. Overview

1.1 Introduction

This tutorial is for intermediate-advanced RoboBuilder user, who is already accustomed with

MotionBuilder, ActionBuilder GUI based programming, and for controlling the individual wCK module of

robot directly by C language programming.

First of all, user needs to understand wCK module (hereinafter, “wCK”) properly. wCK is not a just a

part of Robot, but also, it has various useful functions itself. More robot project can be done as user

uses these wCK featured functions.

If, user understood wCK fully, let’s start the C programming with RoboBuilder.

By realizing all wCK functions with C programming, user learns C programming as well.

User learns from link up with MotionBuilder (*.rbm) file to humanoid robot maze escape

and IR communication programming in this book.

Lastly, basic C programming grammar and simple methods are introduced in this book in

order to help to C programming beginners.

4

1.2 Structure

Chapter 2.1. Change wCK ID
 It describes how to change wCK ID parameter configuration.

Chapter 2.2. Change various wCK parameters
 It describes how to configure ID, Baud Rate, Over Load, Speed, etc parameters.

Chapter 2.3. Set PID Gain and Check wCK response time
It describes PID control theory and how to adjust PID value in accordance with PID gains.

Chapter 2.4. wCK free motion programming
It describes how to do the wCK direct programming without controller.

Chapter 3.1. Firmware and C programming
It describes general firmware’s definition and C programming structure for firmware.

Chapter 3.2. RBC hardware and I/O MAP
It describes RBC hardware structure and I/O MAP

Chapter 3.3. C Programming with Motion file
It describes provided C programming project file structure.

Chapter 3.4. Control RBC LED (Project 3-4 RBC_LED)
It describes how to control RBC LED.

Chapter 3.5. Control wCK Position (Project 3-5 wCK Position)
It describes how to control wCK position for Robot motion.

Chapter 3.6. Control wCK LED (Project 3-6 wCK_LED)
It describes how to control wCK LED and Command packet communication.

Chapter 3.7. Configuration of wCK parameter (Project 3-7 wCK_Parameter)
It describes how to configure wCK parameter with C programming.

5

Chapter 3.8. Make C program with Motion file (Project 3-8 Motion_Program)
It describes how to include motion file into C program.

Chapter 3.9. Using IR controller and Understanding C program (Project 3-9 IR_RemoteCon)
It describes IR remote controller principles and how to change the configuration.

Chapter 3.10. Humanoid Robot Maze Escape Programming (Project 3-10 Maze)
It describes how to program maze escape programming for humanoid robot by using

RoboBuilder distance sensor.

Chapter 4. C Programing Summary
It describes basic C programming grammar for beginner.

1.3 Requirement

- RoboBuilder Kit (5710K or 5720T model)

- CodeVision-AVR C compiler

CodeVision C compiler can be purchased from www.yklogic.co.kr or www.hpinfotech.ro.

Free released version for students is not enough to support the examples in this book.

6

2. Understanding wCK

2.1 Change wCK ID

In RoboBuilder kit, wCK is set own ID from 0 to 15.

If necessary, user can change ID No. from 0 to 30 as user want to change.

※ Requirements

 RBC (Control Box) : 1 EA

 wCK : 1 EA

 wCK Cable : 1 EA

 RS-232 Serial Cable (PC cable) : 1 EA

 Window XP based PC and wCK Programmer software

Let’s change wCK ID 2 to ID 0. Connect wCK, RBC, PC cable and Power adapter as the below.

※ User can connect any of connector in RBC box. But only one wCK should be connected.

Press PF2 button then, power on RBC box. Then RBC Box goes into PC control mode. PF1 LED

(Blue), PF2 LED (Orange) is ON together. (In wCK Programmer ver 1.34 or higher, this procedure is not

needed.)

7

Click “Basic Setting” tap in wCK Programmer.

After connected with PC COM port, click “Scan Baud”, then wCK Baud Rate is shown as the below.

※ If “Try Again” message is shown, please check the wCK cable and PC cable connection.

8

If Scan ID button is clicked, it shows the present wCK ID as shown in the below.

Select desired wCK ID No. in “Set ID” in drop box, then click “Set ID” button. It shows “Good ID

Setting!!!” message, then new wCK ID is shown in Scan ID drop box.

Now, wCK ID has changed.

9

2.2 Change various wCK Parameters

User can change not just wCK ID, but also Speed, Acceleration, Over Load, Boundary, PID gain, etc.

All these parameter configuration is done in same way.

Changed parameter can be initialized to factory setting value as user click “Set Default” button in

“Special Setting” tap.

As “Set Default” function is used to initialize the various parameters at one time, it is useful to check

whether the parameters have been changed.

10

2.3 PID Gain Tuning and wCK Response Feature

When user gives the command to wCK to target point, wCK moves (rotates) to target position.

DC motors have the movement value as shown in the below.

Motor needs some time to move to the target point. Because of this reason, many motor control

method has been studied in order to reduce this time. wCK is applied PID control method, which is

used in many industrial facility. Further, user can configure PID Gain parameter and study the various

motor features as wCK Programmer has GraphView function.

1. Requirements

 RBC Box : 1 EA

 wCK : 1 EA

 wCK Cable : 1 EA

 RS-232 Serial Cable(PC cable) : 1 EA

 Window XP based PC and wCK Programmer software

Please refer to the wCK Programmer user manual during this procedure. Connect the wCK, RBC,

Power Adapter and PC cable as shown in the below.

11

※ wCK can be connected any connector in RBC Box.

Run wCK Programmer software.

Click button after select available COM Port.

Click Scan ID, Scan Baud, Scan Gain, Scan Speed, Scan Boundary buttons in order. It shows the

present values of wCK.

For PID control study, input Upper 254, Lower 1, then clickt “Set Boundary”.

If Boundary width is narrow, wCK movement range becomes narrow. Therefore, set maximum

width as “(254, 1)”.

※ Boundary means wCK movement range width.

12

2. wCK Programmer function for PID control

 BasicSetting Dialogue to set PID Gain.

 AcionCon Dialogue to move wCK to target point. .

 GraphView function to check wCK movement.

① Set wCK PID Gain.

13

② Command wCK movement to target point

A. Click “ActionCon” tap.
B. Click “Scan wCK” button, and wait around 10 seconds.
C. It shows the connected wCK ID.
D. Input desired wCK “Target Position”.
E. Select that wCK ID.
F. Click “ActionRun” button.

③ Check “GraphView”

A. Click “GraphView” tap
B. Click “ViewGraph” button. Then it shows Graph.
C. Select proper scale.
D. Click “SaveGraph” button to save the BMP image, if necessary.

After check the wCK response graph, initialize wCK position in order to set Gain value. In Command

Pad panel, click “Command Execute” to initialize the wCK position.

14

As user follows below examples, user can understand wCK movement features in accordance with PID

parameters.

As P gain value is increased, wCK response time is decreased. But “Overshoot” value is increased as

shown in the above graph. This means, it gives faster response, but target position value is unstable.

15

Let’s change P gain and D gain together.

If user change P gain and D gain together, “overshoot’ value is decreased relatively.

But target position value is still unstable.

16

Let’s change P, D and I gain value together.

wCK response time is decreased, there is no

“overshoot” value and it goes target position

exactly. wCK response feature would be much

improved if PID gain is applied, if user use PID

tune-up method.

P, I, D has each characteristics, respectively, as shown in the below.

 P Gain (Proportion Gain) : It reduces wCK response time.

 I Gain (Integral Gain) : It reduces tolerance.

 D Gain (Differential Gain) : It reduces “overshoot” value and make it stable.

Just increasing the Gain value does NOT means that is has good response feature.

(In example graph 10, P gain is 40, this is not so high value.)

Each parameter affects each other. Therefore, users should tests several times to optimize the gain

value, and do PID control study.

17

2.4 wCK Free Motion Programming

wCK has free motion programming function itself. When user does free motion programming, RBC

should be selected “Non-Standard Platform (PF2 orange LED on)” mode. Then, wCK does movement

independently as long as electrical power is provided.)

 ※ Requirements

 RBC : 1 EA / wCK : 2EA / Cds sensor : 1EA

 RS-232 Serial Cable (PC cable)

 wCK Programmer Tool

Below is MotionPrograming tap for wCK free motion programming.

If you look at green box in wCK Programmer, you can see “Main Instruction”, “Sub Instruction”,

“Data”, and it has 8 lines in left side from L1 to L8. wCK does 8 motions (L1~L8) in order.

18

Let’s find out what is included and the meaning of “Main Instruction”, “Sub Instruction”, “Data” columns.

The following is free motion programming logic table.

Main Instruction had main instructions (0~8), and Sub Instruction is for detailed instruction for main

instruction. Data is position or control values. User can input the values by keyboard.

Example 1] wCK movement from 100 degree to 160 degree in every second with speed 1.

19

If programming is finished as shown in the above, click “Motion Set” button to save in wCK.

After above message box, click “OK”, then power off and on. Then wCK starts free motion itself if

power is supplied.

In order to delete free motion programming, click “ Clear All Instruction button, and

select “0” in Set No. of Instruction to delete the motion.

Let’s try simple robot with free motion programming.

[Wheel Robot 1]

Prepare two wCKs, wCK ID0, wCK ID1. Assemble the wCK as shown in the below. This Robot will

not move because it does NOT include RBC Box. However, it would be possible without RBC if you

use free motion programming method.

Free motion programming is for each wCK. Therefore, two different programming are needed for two-

wheeled Robot.

20

In order to move forward, one wCK should move in clockwise direction, and the other wCK should move

counterclockwise direction. For backward movement, programming in vice versa.

Let’s program two wCKs for forward movement and backward movement in every second interval

when power is supplied.

※ For ID 0 and ID 1 wCK , it should be programmed respectively.

After programmed it as the above, supply the power into wCKs, then Robot will move forward and

backward direction.

[Wheel Robot 2 – Sensor based Robot]

wCK has own I/O port itself. (Digital Output 2, AD Input 1). As you use AD Input, Robot will move as

light level. In this example, “Cds sensor” is used.

wCK wCK

9V Battery

Cds Cds

21

For Cds sensor, solder with resistance 5.1k as shown in the below.

Program the wCK in wCK Programmer as shown in the below.

Robot measures wCK light level. Therefore, Robot moves depends on AD set value “170” as

programmed in the above.

User can make various wCK application Robots if you use various wCK functions.

5.1k ohm

Cds : Room Light - 4.1 K ohm

If lux. is high, resistance is decreased.
Therefore, AD value is lowered by voltage
distribution law.

22

3. RBC Firmware Study for User Created Robot

3.1 Firmware and C Program

Firmware is generally defined as a micro program that is saved in ROM memory. As an aspect of

program, it is almost same as software, but it has much closer relationship with hardware. Firware is

faster than software, but slower than hardware. And it is not comfortable for general user. It is quite

dependent on hardware, therefore it should be changed when hardware component is changed.

Firmware can be considered as a software that is close to hardware.

If you use RoboBuilder Firmware Upgrade Tool, user-created firmware can be saved into RBC and is

possible to operate wCK. This motivates user to study firmware easily. Generally, user needs certain

electronic boards or other hardware devices to study firmware, but RoboBuilder user does NOT need

because RBC and RBC Firmware Tool are everything that user needs to study firmware.

If user-created firmware is not working at all, user can simply recover it with RoboBuilder published

firmware version in RoboBuilder website.

How general user can create own firmware or how it can upload the firmware into RBC box?

Let’s find out in next pages. The below is the simple structure of RoboBuilder firmware generation.

23

 Write C language program.

 User compiler (ex. CodeVisionAVR), to generate .ASM, or .HEX file.

 Upload firmware file (*.hex) into RBC Box.

For C coding, user should know C language programming well. Please refer to the various C programming

books in the bookstore.

In this example, we assume that user knows basic C programming method.

24

Below is LED ON/OFF program flows by C language.

#include <mega128.h> is header file to use “DDRA”, “PORTA”.

Complicated sentences is redefined with “#define” word to understand program easily.

This program is for 8 LEDs On/Off one time. If “#define” word is not used, program would be like the

below.

25

3.2 RBC Hardware Structure and I/O MAP

Below is RBC hardware block diagram.

User can understand how this hardware is connected. RBC is connected with power supply, RS-232

communication, TTL UART, wCK power line and PSD sensor.

Below is RBC micro-controller ATmega128 PIN allocation and I/O map.

26

PIN No. PIN Name
I/O

Dir
Description

1 PEN X Not Connected

2 (RXD0/PDI) PE0 I Communcation with wCK, Sound IC (YNN Model)

3 (TXD0/PDO) PE1 O Communcation with wCK, Sound IC (YNN Model)

4 (XCK0/AIN0) PE2 X Not Connected

5 (OC3A/AIN1) PE3 O Speaker Output (YNN Model)

6 (OC3B/INT4) PE4 X 3 Axis sensor (SCK)

7 (OC3C/INT5) PE5 X 3 Axis sensor (SDI)

8 (T3/INT6) PE6 I IR Remote Controller Receiver Module (38kHz)

9 (ICP3/INT7) PE7 I Bluetooth Signal Receiver

10 (SS) X Not Connected

11 (SCK) PB1 O For ISP

12 (MOSI) PB2 O Power Supply 24LC256T-I/SN (High : ON, Low : OFF)

13 (MISO) PB3 X Not Connected

14 (OC0) PB4 O Battery Charging (High : Charging ON, Low : Charging OFF)

15 (OC1A) PB5 O PSD Sensor GP2Y0A21YK0F Power Control (High : ON, Low : OFF)

16 (OC1B) PB6 O Sound IC Reset (High : Disabled, Low : Enabled)

17 (OC2/OC1C) PB7 X Not Connected

18 TOSC2 / PG3 X Not Connected

19 TOSC1 / PG4 X Not Connected

25 (SCL/INT0) PD0 O For Serial EEPROM Communication (SCL)

26 (SDA/INT1) PD1 I/O For Serial EEPROM Communication (SDA)

27 (RXD1/INT2) PD2 I Communication with PC

28 (TXD1/INT3) PD3 O Communication with PC

29 (ICP1) PD4 X Not Connected

30 (XCK1) PD5 X Not Connected

31 (T1) PD6 X Not Connected

32 (T2) PD7 O wCK power supply (High : ON, Low : OFF)

33 (WR) PG0 X Not Connected

34 (RD) PG1 X Not Connected

35 (A8) PC0 X Not Connected

36 (A9) PC1 X Not Connected

37 (A10) PC2 X Not Connected

38 (A11) PC3 X Not Connected

39 (A12) PC4 X Not Connected

40 (A13) PC5 X Not Connected

41 (A14) PC6 X Not Connected

42 (A15) PC7 O Power LED (Red)

43 (ALE) PG2 O Power LED (Green)

44 (AD7) PA7 O Error LED (Red)

45 (AD6) PA6 O Run LED (Green)

46 (AD5) PA5 O Run LED (Blue)

47 (AD4) PA4 O PF2 LED (Orange)

48 (AD3) PA3 O PF1 LED (Red)

49 (AD2) PA2 O PF1 LED (Blue)

50 (AD1) PA1 I PF2 Switch (High : Not pressed, Low : Pressed)

51 (AD0) PA0 I PF1 Switch (High : Not pressed, Low : Pressed)

54 (ADC7/TDI) PF7 I For ISP

27

55 (ADC6/TDO) PF6 O For ISP

56 (ADC5/TMS) PF5 O For ISP

57 (ADC4/TCK) PF4 O For ISP

58 (ADC3) PF3 I MIC OUT(0~5V)

59 (ADC2) PF2 I GND

60 (ADC1) PF1 I Input Voltage (=wCK Output Voltage x 560 / 1560)

61 (ADC0) PF0 I PSD Sensor - GP2Y0A21YK0F Signal (0~3.2V)

In order to program firmware, user should know I/O MAP, however, it is difficult to memorize all of the

above. Therefore, check the necessary part when user program the certain firmware.

3.3 C Programming with Motion File

Download the C Programming with motion file data from RoboBuilder website (Support - Specialist Tip

section).

In “cv_exam” folder, below files are located.

If CodeVisionAVR is installed, cv_ex1.prj is shown as the above. Click “cv_ex1.prj”.

File structure would be as the below.

Example project has three files (Main.c / Comm.c / DIO.c).

28

Double-Click “Main.c”.

It looks quite complicated code, however, you can just take a look at the outline now. Most “#define”

word is included in “xxx.h” file.

29

Press [F9] to compile it, and click [OK].

It shows each include files, used variables and used functions. If you check out [Macro.h] file,

there are many “#define” words.

Dividing the code with several files are effective way to mange and understand it.

30

3.4 RBC LED Control – Understanding RBC I/O

Let’s change the example project and control RBC Power, Run, Error, PF1 and PF2 LED button.

 ※ Requirements

 RBC : 1EA

 RS-232 Serial Cable(PC cable)

 RBC Firmware Upgrade Tool

 CodevisionAVR Complier

 Published RBC Firmware

Let’s check out RBC IO MAP first for controlling 5 LED in RBC.

It is “PIN No”, “PIN Name”, “IO Direction”, “Description” in left order.

For example, Power LED(Red) is connected with ATmega128 No. 42 - PC7 Pin. Power LED (Red) is

On / Off in accordance with Pin output. However, user can not check this only with IO MAP.

Therefore, let’s find out in source code level.

31

If you check out “Main.h”, all lines are used “#define”. Power_LED (Red) is defined as the below.

#define PWR_LED2_ON CLR_BIT7(PORTC)

#define PWR_LED2_OFF SET_BIT7(PORTC)

Therefore, you use “PWR_LED2_ON” in source code.

This meaning is clearing PORTC 7 Pin (Output “0”). In “Macro.h”, it is defined as

#define CLR_BIT7(x) (x &= 0x7F)

CLR_BIT7(PORTC) is defined as “PORTC &= 0x7F”.

CLR_BIT7(PORTC) means ‘0’, output 0XXX XXXX in PORTC. (X is ‘1’ or ‘0’, Don’t care). PORTC is

hardware name in ATmega128. In order to understand “PORTC &= 0x7F”, please refer to the C

programming with ATmega128 books.

In source code, use PWR_LED2_ON for Power_Led(Red) on, and use PWR_LED2_OFF for power-off.

Let’s revise the code for programming LED blinking in RBC.

32

CPU starts from Main(),

 WORD (unsigned int) I, lMSEC,

 HW_init(), SW_init(), SpecialMode()

 Power_LED(Red) On/Off loop in every 0.5 sec.

※ #asm(“sei”); TIMSK |= 0x01; is hardware dependency sentence.

Revised part is “/*, */” and Power LED (Red) On/Off loop.

Press, “[SHIFT]+[F9]”.

33

In Information window, click “Cancel”, then run RBC Firmware Upgrade Tool.

Connect PC and RBC with PC cable, then power on RBC.

 Check COM PORT and Baud Rate,

 Select “Main.hex” file that is just made.

 Click [Click here and Push Reset Button].

 Use tweezers and press “Reset” button that is located between PF1 and PF2.

 Later, it shows message box.

If succeeded, Power_LED (Red) is blinking in every 0.5 sec. In RBC, 8 LEDs are equipped. Try all

other LED blinking in several ways.

※ If you would like to recover with normal published firmware, please download from RoboBuilder

website (Support – Download section).

Then upgrade the firmware by using RBC Firmware Upgrade Tool.

34

3.5 Control wCK Position – 8 Bit Command Communication

Revise the example project file to control wCK position.

 ※ Requirements

 RBC : 1EA / wCK : 1EA

 RS-232 Serial Cable(PC Cable)

 RBC Firmware Upgrade Tool

 CodevisionAVR Compiler

wCK is smart actuator module through RBC UART communication. Therefore, user need to know the

communication between wCK and RBC in order to control wCK.

Firstly, user should know the ‘Packet-Communication’ concept.

Packet-Communication is receiving and transmitting the pre-engaged information in order.

For example, let’s say command ‘01’ “Move wCK ID 0”, and command ‘10’ is “Stop wCK ID 1”.

By doing this way, packet-communication would be very effective way to communicate each other.

Let’s see how RBC and wCK communicates between them.

Download “wCK module protocol table file” from RoboBuilder website.

(Support – Tips for Specialist Section)

Let’s find out what this table means.

For example,

RBC commands “Move to 200 position with torque 1” to wCK ID 01.

This can be re-written as follows;

0xFF(header) + 0x21(Torq(1)+ID(1)) + 0xC8(Target Position(200)) + 0x69(CheckSum)

We do NOT know what this means, but wCK ID 01 moves to “200” position with torque 1.

35

Firstly, RBC sends Header ‘0xFF’, then Torque, Target Position and CheckSum in order to wCK.

Therefore, user should follow the communication information sequence.

Let’s see the below firmware source to control wCK.

In “Comm.c” file, there is “void sciTx0Data(BYTE td)” function.

“void” means there is no return value. And “BYTE td” means input data to be processed.

Let’s understand this briefly that hardware send data if data is input for ‘td’ variable.

For example, if you want to send ‘200’ to wCK, just input “sciTx0Data(200)”.

To move wCK ID01 to ‘200’ position, it sends 4 hexadecimals.

Sending data : [0xFF] + [0x21] + [0xC8] + [0x69]

36

Therefore, user uses “sciTx0Data” function and data “0xFF, 0x21, 0xC8, 0x69” for programming.

Let’s program that wCK moves ‘200’ position and moves ’50’ position.

Press [SHIFT] + [F9] to generate firmware file.

RBC Power_LED will blink and wCK moves left and right side continuously.

However, it is very uncomfortable to calculate hexadecimal values every time it changes movement

values. Therefore, put one function in “Comm.c” file and declare this function in “Comm.h” as shown in

the below.

 If you know C language operations <<, |, ^ and &, you can understand the above function.

37

Let’s revise the code in “Main()” function as the below.

If you revised all source code, compile the code and make the “*.hex” file.

Download this firmware file to RBC as you use “RoboBuilder Firmware Upgrade Tool”.

The above-right side C code is much easier than left side C code to understand.

38

3.6 Control wCK LED

 ※ Requirements

 RBC : 1EA / wCK : 1EA

 RS-232 Serial Cable (PC cable)

 RBC Firmware Upgrade Tool

 Code VisionAVR Compiler

As wCK position control, let’s control wCK I/O PORT (LED) through packet communication.

Actually, RBC and wCK use interrupt communication, therefore it increases CPU operation efficiency.

Then, what is “Interrupt”?

Atmega128 is a CPU that processes one instruction at one time. It could not process two tasks

at the same time. But what would be happened if “B” task should be done when CPU is in the

middle of processing the “A” task? It stops “A” task, then process “B” task first if “B” task is more

important. This is called “Interrupt” method.

Depend on task importance, CPU possession is changed. Generally, main() and external functions are

less priority than certain hardware function. RBC-ATmega 128 CPU can decide this priority.

Controlling wCK position is “Polling” method.

But if you use “Interrupt” method, it can response much faster from the environment change.

39

Let’s see the “Polling” method code and “Interrupt” method code in the below.

It looks that c source code of Polling method is shorter and simple.

However, Interrupt method is faster since it uses Data Load method and Function calling process is

more effective way. Transmission interrupt function is as the below.

Process from transmitting the first data to the second data, process time is different depends on

automatic or manual. Process time is accumulated for this reason. So, CPU is used 100%, or

sometime, 80% used. Handling RBC and wCK means that it makes the communications between RBC

and wCK smoothly. Using interrupt method is more effective way for handling wCK.

40

For more detailed information about Interrupt method, please check out ATmega128 books.

Let’s control wCK-1108T, wCK-1111T module LED through I/O Write protocol.

In “Comm.c” file, write the function as the left side, declare the function as the right side in “Comm.h” file.

Let’s analyze IOwrite(ID, IOchannel) function.

41

Please make “*.hex” file and download to RBC.

wCK will move from 200 position to 50 position as wCK internal LED is blinking.

42

3.7 Configure wCK Parameters - Configure Command and Read Data

 ※ Requirements

 RBC : 1EA / wCK : 1EA

 RS-232 Serial Cable(PC Cable)

 RBC Firmware Upgrade Tool

 CodevisionAVR Compiler

If wCK ID has been changed, existed programs wCK position control and wCK LED control does NOT

work. wCK ID information is included in packet.

Therefore, it does not work if wCK ID is not matched.

Let’s check the communication protocol first. ID set protocol is as the below.

6 byte data is transmitted totally.

[header] + [mode | ID] + [mode] + [newID] + [Byte5 (newID)] + [CheckSum]

First [mode] means Configure Command, second [mode] means ID Set.

In “Comm.c” file, below source code is included.

43

Data to be transmitted are 6 Bytes. 2 Bytes are Header and CheckSum, and in “SendSetCmd” function,

Configure Command (mode(7)) is shifted left side automatically. Therefore, you should

decide “ID, Data1, Data2, Data3”.

If you check out communication protocols again, “Mode(12)” value should be input in Data1.

In Data2 and Data3, you can input ID No. to be changed.

SendSetCmd (wCK ID to be controlled, 12, new ID, new ID).

For example, if you want to change the wCK ID with “10”, it should be like the below.

SendSetCmd (1, 12, 10, 10)

44

Let’s include ID Set command in the control wCK LED source code. Last wCK ID was “1”.

Change the source code and check out the RBC and wCK movement.

Does wCK LED is blinking and moving left and right side?

It blinks only wCK LED, and user will know the reason.

Let’s look at the code again. Do you understand “SendSetCmd(1, 12, 10, 10);” function?

Let’s change with “SendSetCmd(1, ID_SET, 10, 10).” In previous source code, it is difficult to know

the meaning of “12” and “10”) before you refer the communication protocol table.

Add “#define ID_SET 12” in “Main.h” file.

45

In order to change the wCK ID with “1”, revise the code as the below.

wCK ID is changed from “10” to “1”.

 SendSetCmd(10, ID_SET, 1, 1);

As shown in the above, parameters can be changed from source coding by user.

46

3.8 C Programming with Motion File

Change the motion file as a header file (*.h) format.

This is not for using RoboBuilder standard firmware, to use user-defined firmware to run motion file

directly.

 ※ Requirements

 Robobuilder Robot : 1set

 RS-232 Serial Cable(PC Cable)

 RBC Firmware Upgrade Tool

 CodevisionAVR Compiler

Published RBC firmware data (Please see the Example project : 3-8 Motion Program)

1) Example Motion File

① Project File : p_ex1.prj

② Motion File : m_ex1.rbm

2) Example C source file (CodeVisionAVR version 1.24.8d)

① Project File : cv_ex1.prj

② Unit File : main.c, comm.c, dio.c

③ Header File : main.h, comm.h, dio.h, macro.h, m_ex1.h

NOTE)

MotionBuilder version : 1.10 beta or higher version.

CodeVisionAVR : 1.24.8d

Job Procedure

Change into Header File (*.h)

1. Run MotionBuilder.

2. Click “Open” button, then load “p_ex1.prj” in motion_exam folder.

3. Click “Motion List” button.

47

4. Click “Creator Header File” after you select “ME_FMT#1” in Header File Format.

5. Input Header file name (*.h), then, click “Save” button. In the below example, file name is

“p_ex1.h”.

48

6. It is asked whether you see the generated header file. If you click “Yes”, it shows header file

contents.

7. Header file is generated successfully.

Registering header file in C source code
1. Move 'p_ex1.h' file into “cv_exam\src” folder.

2. Load ‘cv_ex1.prj’ in CodeVision.

3. Add below code in “comm.c” file.

#include "p_ex1.h"

4. Match the below array name with motion name. (Use big letter.)

For instance, motion name is “M_EX1”,

gpT_Table = M_EX1_Torque;

gpE_Table = M_EX1_Port;

gpPg_Table = M_EX1_RuntimePGain;

gpDg_Table = M_EX1_RuntimeDGain;

gpIg_Table = M_EX1_RuntimeIGain;

gpFN_Table = M_EX1_Frames;

gpRT_Table = M_EX1_TrTime;

gpPos_Table = M_EX1_Position;

Motion.NumOfScene = M_EX1_NUM_OF_SCENES;

Motion.NumOfwCK = M_EX1_NUM_OF_WCKS;

5. Header file registering finished.

Create firmware file (*.hex)
1. Click Project-Make menu in CodeVisionAVR, or press “Shift” + “F9” key.

2. firmware file (*.hex) will be generated.

Download firmware and Play RoboBuilder
1. Connect Power Adapter and PC Cable, then Power on RBC.

2. Run RBC Firmware Upgrade Tool and set proper COM Port.

49

3. Click 'Click here and Push Reset Button'.

4. Press Reset button (It is located between PF1 and PF2 button), then it starts upgrade.

5. If finished, it shows 'Flash File successfully downloaded.' message box.

6. Disconnect RoboBuilder from PC, then press PF1 button to check out.

Generated motion header file has wCK torq, target position, frame no., etc. This information is saved

in C program header file as an array. C program use these data to control wCK.

50

Generated header file data are assigned as the structure members. Data is divided Motion data and

Scene data. Based on these two data, frame data is needed to connect each Scene data.

And it send the “Position move” instruction to wCK.

In example source code, SampleMotion() function should be included in order to run motion

header file. SampleMotion() function load various data and run motion file. Therefore, you can just

change the motion file name variable properly if you would like to run other motion file.

51

If you look at the above source code, “M_PlayFlash()” function gets motion information and make and

send the frames to each wCK.

Let’s check out the below Flow_Chart how M_PlayFlash() function makes motion.

M_PlayFlash function is running until motion is finished.

 GetMotionFromFlash(), GetSceneFromFlash(), CalcFrameInterval(), SyncPosSend() functions are

included in “Comm.c”.

If you don’t use wCK LED function, you can remove “SendExPortD()” function.

Advanced algorithm walking or sensor function can be included in this source code.

So you can build much smarter robot as you do C programming.

52

3.9 IR Remote Controller with C Programming

 ※ Requirements

 Robobuilder Robot : 1set

 IR remote controller : 1EA

 RS-232 Serial Cable(PC Cable)

 RBC Firmware Upgrade Tool

 CodevisionAVR Compiler

If you look at the below pictures, it shows IR remote controller pulse signal that divide ‘0’ and ‘1’. BIT ‘0’

and BIT ‘1’ is different in terms of signal length. BIT ‘0’ signal is 1 ms, while BIT ‘1’ signal length is 1.5ms.

If you look at the below SINGLE-WORD FORMAT, IR remote controller sends 5ms Header Pulse at first

time, then it sends transmission code.

Header Pulse is ready signal to send “CUSTOM CODE”. Real transmission code is “Custom Code”,

and “Data Code”. Therefore, header pulse and data should be distinguished. The best way is to use

signal length. If 1~1.5ms signal is in, it is data. If 5 ms signal is in, it is header pulse. In order to know

the signal length, check the signal rise and signal fall. This is hardware dependence function. This code

is included in published program source. Let’s check out the below source code to understand clearly.

53

//--
// Remote Controller IR Receiver Interrupt
//--
interrupt [EXT_INT6] void ext_int6_isr(void) {
 BYTE width; // Signal Length
 WORD i; // Temporary Variable

 width = TCNT2; // Save Signal Length
 TCNT2 = 0; // Initialize Register (Measure signal length)

 if(gIrBitIndex == 0xFF){ // When signal input is idle status
 // Check whether input signal is 5ms length (header pulse)
 if((width >= IR_HEADER_LT) && (width <= IR_HEADER_UT)){
 F_IR_RECEIVED = 0; // Receive finish flag inactivate Receiving idle status
 gIrBitIndex = 0; // Initialize data code number variable
 for(i = 0; i < IR_BUFFER_SIZE; i++) // Initialize data buffer
 gIrBuf[i] = 0;
 }
 }
 else{ // When data code is in the middle of receiving
 // Check whether the received data code ‘0’ is 1ms. If ‘0’, receiving code numbers are increased.
 if((width >= IR_LOW_BIT_LT)&&(width <= IR_LOW_BIT_UT)) gIrBitIndex++;

 // Check whether the received data code ‘1’ length is 1.5ms
 else if((width >= IR_HIGH_BIT_LT)&&(width <= IR_HIGH_BIT_UT)){

 // Input received ‘1’ bit position in order

 if(gIrBitIndex != 0) gIrBuf[(BYTE)(gIrBitIndex/8)] |= 0x01<<(gIrBitIndex%8);
 else gIrBuf[0] = 0x01;
 gIrBitIndex++; // Increase the received data code number
 }
 // When the received code is NOT ‘0’, or ‘1’, either.
 else gIrBitIndex = 0xFF;

 if(gIrBitIndex == (IR_BUFFER_SIZE * 8)){ // If input code is filled in buffer
 F_IR_RECEIVED = 1; // Receive finish flag setup => Receiving finish
 gIrBitIndex = 0xFF; // Input idle status setup
 }
 }
}

As shown in the above, IR remote controller has own signal status and method. Therefore, you need to

check IR remote controller method in advance. Received data has 4 Byte information as the below.

Byte1 + Byte2 + Byte3(remote controller own custom code) + Byte4(data code)

This received 2 data and information are forwarded through “ProcIR()” function.

54

//--

// Process IR receiving

//--

void ProcIr(void)

{

 WORD i; // Temporary variable

if(F_DOWNLOAD) return; // When program download, IR receiving is NOT available.

If ‘C’ button, ‘#’ button, NON-Standard platform, IR receiving is NOT available

if(F_FIRST_M && gIrBuf[3]!=BTN_C && gIrBuf[3]!=BTN_SHARP_A && F_PF!=PF2) return;

if(F_IR_RECEIVED){ // IR receiving flag activated 4 Byte received

 EIMSK &= 0xBF; // No IR receiving

 F_IR_RECEIVED = 0; // IR receiving flat inactivate

// Check whether remote controller is registered in RBC Custom code check

 if((gIrBuf[0]==eRCodeH[0] && gIrBuf[1]==eRCodeM[0] && gIrBuf[2]==eRCodeL[0])

 ||(gIrBuf[0]==eRCodeH[1] && gIrBuf[1]==eRCodeM[1] && gIrBuf[2]==eRCodeL[1])

 ||(gIrBuf[0]==eRCodeH[2] && gIrBuf[1]==eRCodeM[2] && gIrBuf[2]==eRCodeL[2])

 ||(gIrBuf[0]==eRCodeH[3] && gIrBuf[1]==eRCodeM[3] && gIrBuf[2]==eRCodeL[3])

 ||(gIrBuf[0]==eRCodeH[4] && gIrBuf[1]==eRCodeM[4] && gIrBuf[2]==eRCodeL[4])){

 switch(gIrBuf[3]){ // Check received data code

 case BTN_A: // When received data code is BTN_A.

 M_Play(BTN_A); // Run BTN_A motion

 break;

 case BTN_B: // When received data code is BTN_B.

 M_Play(BTN_B); // Run BTN_B motion

 break;

 …

 }

 }

 for(i=0;i<IR_BUFFER_SIZE;i++) gIrBuf[i]=0; // IR receiving initialize

 EIMSK |= 0x40; // Permit IR receiving

}

}

 BTN_A, BTN_B, BTN_C ※ command values are defined in “Main.h”.

If you make own function and source code instead of “M_Play()” function, you can play other

program with IR remote controller.

55

3.10 Humanoid Robot Maze Escape

Let’s make the maze escape program to use HUNO PSD sensor.

 ※ Requirements

 RoboBuilder (Huno)

 RoboBuilder IR Remote Controller

 RS-232 Serial Cable(PC Cable)

 RBC Firmware Upgrade Tool

Let’s check out PSD sensor principle and usage.

PSD is the sensor that reflected light angle is changed in accordance with distance. Let’s look at the

above left figure. If the object become more distant, ‘L’ value is increased while ‘A’ value is decreased.

And ‘X’ value is also decreased. For this reason, output value is changing.

The above graph is the relationship between actual distance and PSD sensor voltage. In order to

measure the distance, the formula is ;

 Distance = 27.5 / ((5 * AD result value) / 1024)

This has included a little tolerance. But this is to judge the object detection, not a

distance measure. Therefore, you can use from 15cm to 45cm distance without problem.

56

Let’s check out the distance measurement program using PSD sensor and ATmega128

ADC(Analog Digital Converter),

//--
// Read Distance from PSD / “Adc.c”
//--
void Get_AD_PSD(void)
{

float tmp = 0; // variable for distance calculation
float dist; // variable for distance calculation

EIMSK &= 0xBF; // outer interrupt no.6 inactivate (IR receiving inactivate)
PSD_ON; // PSD ON
delay_ms(50); // Idle status until PSD Power On
gAD_Ch_Index = PSD_CH; // ADC PSD channel selection
F_AD_CONVERTING = 1; // AD convert finish flag set
ADC_set(ADC_MODE_SINGLE); // select AD mode
while(F_AD_CONVERTING); // AD convert finish flag clear
tmp = tmp + gPSD_val; // save AD convert result
PSD_OFF; // PSD Power Off
EIMSK |= 0x40; // IR receiving reactivate

dist = 1117.2 / (tmp - 6.89); // PSD value calculate calculation by experiment
//dist = 27.5 / (5.0*(float)(gAD_val&0x03ff)/1024.0); // PSD calculation formula
if(dist < 0) dist = 50; // check distance limit
else if(dist < 10) dist = 10;
else if(dist > 50) dist = 50;
gDistance = (BYTE)dist; // save the result into gDistance

}

//--
// A/D convert finish interrupt / “Main.c”
//--
interrupt [ADC_INT] void adc_isr(void) { // Run interrupt when AD convert is finished.
 WORD i; // Temp. variable
 gAD_val = (signed char)ADCH; // Save 10bit AD convert result
 switch(gAD_Ch_Index){ // Select channel
 case PSD_CH : // PSD channel
 gPSD_val = (BYTE) gAD_val; // Save into PSD variable
 break;
 case VOLTAGE_CH : // Battery voltage check channel
 i = (BYTE) gAD_val;
 gVOLTAGE = I * 57;
 break;

57

 case MIC_CH : // Mic. Input channel
 if((BYTE)gAD_val < 230)
 gMIC_val = (BYTE)gAD_val;
 else gMIC_val = 0;
 break;
 }
 F_AD_CONVERTING = 0; // AD convert flag clear)
}

As Get_AD_PSD() function is called, measured distance value is saved in gDistance variable.

In order to escape the maze, use humanoid basic motion “move forward”, “move back ward”,

“turn left”, “turn right” in “HunoBasic.h” file. Below is the method to escape the maze.

Example)

1. If there is no wall, move forward.

2. If the wall is detected, check left side. Turn ①

3. If front and left side wall are detected, check right side. Turn ②

4. If front, left and right side walls detected, go to opposite way. Turn ③

In order to do this, robot should turn 90 degree. 90 degree turning is possible if HUNO’s turn left or and

turn right 3 times continuously in flat floor. In the above example, robot turns left 90 degree (turn left ①

3 times), 180 degree turn left (turn left 6 times) 90 degree turn right (turn right 3 times), and move ② ③

forward motion are needed.

Let’s find out how HUNO motions are conducted through which functions.
Below is the part of “M_Play (BYTE BtnCode)” function in “Comm.c”.

58

void M_Play(BYTE BtnCode)

{

 // ① Check whether remote controller BTN_C is pressed, and run BasicPose
 if(BtnCode == BTN_C){

 BasicPose(F_PF, 50, 1000, 4);

 }

 if(F_PF == PF1_HUNO){ // ② Check platform (Huno, Dino, Dogy)

 switch(BtnCode){ // ③ Depends on the pressed button code

 case BTN_A:

 SendToSoundIC(7);

 gpT_Table = HUNOBASIC_GETUPFRONT_Torque;

 gpE_Table = HUNOBASIC_GETUPFRONT_Port;

 gpPg_Table = HUNOBASIC_GETUPFRONT_RuntimePGain;

 gpDg_Table = HUNOBASIC_GETUPFRONT_RuntimeDGain;

 gpIg_Table = HUNOBASIC_GETUPFRONT_RuntimeIGain;

 gpFN_Table = HUNOBASIC_GETUPFRONT_Frames;

 gpRT_Table = HUNOBASIC_GETUPFRONT_TrTime;

 gpPos_Table = HUNOBASIC_GETUPFRONT_Position;

 Motion.NumOfScene = HUNOBASIC_GETUPFRONT_NUM_OF_SCENES;

 Motion.NumOfwCK = HUNOBASIC_GETUPFRONT_NUM_OF_WCKS;

 break;

 case BTN_B:

 default: return;

 }

 }

 else if(F_PF == PF1_DINO){ // ② Check Platform (Huno, Dino, Dogy)

 switch(BtnCode){ // ③ Depend on the pressed button code

 case BTN_A:

 default: return;

 }

 }

 else if(F_PF == PF1_DOGY){ // ② Check Platform (Huno, Dino, Dogy)

 switch(BtnCode){ // ③ Depend on the pressed button code

 case BTN_A:

 default: return;

 }

 }

 else if(F_PF == PF2){ // If platform is non-standard platform, return

 return;

 }

 Motion.PF = F_PF;

 M_PlayFlash();

}

59

You can see that HUNO run motions are different in accordance with conditions.

case BTN_LR : HUNOBASIC_TURNLEFT_xxx
 ….
case BTN_U : HUNOBASIC_WALKFORWARD_xxx
 ….
case BTN_RR : HUNOBASIC_TURNRIGHT_xxx
 ….
case BTN_D : HUNOBASIC_WALKBACKWARD_xxx
 ….

For move forward, M_Play(BTN_U) function is called.

For turn left, M_Play(BTN_LR) function is called.

For turn right, M_Play(BTN_RR) is called.

For move backward, M_Play(BTN_D) is called.

Only different point is the using the sensor and algorithm instead of IR remote controller.

Let’s see the C program that robot escapes the maze.

void Robot_Turn_Left_90(void){ // 90 degree left turn
 M_Play(BTN_LR); M_Play(BTN_LR); M_Play(BTN_LR); // left turn 3 times
}

void Robot_Turn_Left_180(void){ // 180 degree left turn
 M_Play(BTN_LR); M_Play(BTN_LR); M_Play(BTN_LR); // left turn 5 times
 M_Play(BTN_LR); M_Play(BTN_LR);
}

void Robot_Turn_Right_90(void){ // 90 degree right turn
 M_Play(BTN_RR); M_Play(BTN_RR); M_Play(BTN_RR); M_Play(BTN_RR); // right turn 4 times
}

void Robot_Forward(void){ // Move forward
 M_Play(BTN_U); M_Play(BTN_U); M_Play(BTN_RR); // Move forward 2 times + right turn once
}

void Robot_Backward(void){ // Move backward
 M_Play(BTN_D); // Move backward once
}

void User_Func_1(void){ // Maze escape function
 while(1){ // Run continuously
 Get_AD_PSD(); // Check front distance (1)
 if(gDistance <= 12) Robot_Backward(); // If too close, Move backward

60

 else if(gDistance <= 30){ Robot_Turn_Left_90(); // If there is wall, 90 degree turn left
 Get_AD_PSD(); // Check left side distance (2)
 if((gDistance <= 30)){ Robot_Turn_Left_180(); // If there is wall, 180 degree turn left
 Get_AD_PSD(); // Check right side distance (3)
 if((gDistance <= 30)) Robot_Turn_Right_90(); // If there is wall, 90 degree turn right
 }
 }
 else Robot_Forward(); // If there is no wall, move forward

}
}

 ※ Turn right or left run times could be different depends on the floor status.

In order to use the above program,

1. Include the above code in “main()” function in “Main.c”.

2. Open “DIO.c” file. Add user function in “case BTN_1” line.

(In basic posture, “User_Func_1()” function runs if you press IR remote controller “1” button.)

case BTN_1 : User_Func_1();

3. Press Shift + F9 button to compile it and download “hex” file into RBC box.

4. Press “1” button to run the user program after robot basic posture.

61

4. C Program Summary

4.1 Variables

A variable is just a named area of storage that can hold a single value (numeric or character). The C

language demands that you declare the name of each variable that you are going to use and its type, or

class, before you actually try to do anything with it. Variable value initially ‘0’.

Name Description Size* Range*

char Character or small integer. 1byte
signed: -128 to 127

unsigned: 0 to 255

short int (short) Short Integer. 2bytes
signed: -32768 to 32767

unsigned: 0 to 65535

int Integer. 4bytes
signed: -2147483648 to 2147483647

unsigned: 0 to 4294967295

long int (long) Long integer. 4bytes
signed: -2147483648 to 2147483647

unsigned: 0 to 4294967295

bool
Boolean value. It can take one of two values:

true or false.
1byte true or false

float Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits)

double Double precision floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits)

long double Long double precision floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits)

 Ex) int VariableNumber1; // int type variable

 int VariableNumber2 = 0; // int type variable value ‘0’.

 char VariableNumber3; // char type variable

unsigned char VariableNumber4 = 255; // char type variable value ‘255’

The Programming language C has two main variable types

Local Variables

Local variables scope is confined within the block or function where it is defined. Local variables must

always be defined at the top of a block. When a local variable is defined - it is not initialize by the system,

you must initialize it yourself. When execution of the block starts the variable is available, and when the

block ends the variable 'dies'.

Global Variables

Global variable is defined at the top of the program file and it can be visible and modified by any function

that may reference it. Global variables are initialized automatically by the system when you define them!

If same variable name is being used for global and local variable then local variable takes preference in

its scope. But it is not a good practice to use global variables and local variables with the same name.

62

4.2 Operators

Assignment (=)

The assignment operator assigns a value to a variable.

a = 5;

This statement assigns the integer value 5 to the variable a. The part at the left of the assignment

operator (=) is known as the lvalue (left value) and the right one as the rvalue (right value). The lvalue

has to be a variable whereas the rvalue can be either a constant, a variable, the result of an operation or

any combination of these.

The most important rule when assigning is the right-to-left rule: The assignment operation always takes

place from right to left, and never the other way:

a = b;

This statement assigns to variable a (the lvalue) the value contained in variable b (the rvalue). The value

that was stored until this moment in a is not considered at all in this operation, and in fact that value is

lost.

Consider also that we are only assigning the value of b to a at the moment of the assignment operation.

Therefore a later change of b will not affect the new value of a.

Arithmetic operators (+, -, *, /, %)

The five arithmetical operations supported

Operations of addition, subtraction, multiplication and division literally correspond with their respective

mathematical operators. The only one that you might not be so used to see is modulo; whose operator is

the percentage sign (%). Modulo is the operation that gives the remainder of a division of two values.

For example, if we write:

a = 11 % 3;

the variable a will contain the value 2, since 2 is the remainder from dividing 11 between 3.

63

Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)

When we want to modify the value of a variable by performing an operation on the value currently stored

in that variable we can use compound assignment operators:

expression is equivalent to

value += increase;value = value + increase;

a -= 5; a = a - 5;

a /= b; a = a / b;

price *= units + 1; price = price * (units + 1);

Relational and equality operators (==, !=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use the relational and equality operators.
The result of a relational operation is a Boolean value that can only be true or false, according to its Boolean
result.

We may want to compare two expressions, for example, to know if they are equal or if one is greater than the
other is. Here is a list of the relational and equality operators that can be used in C++:

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Logical operators (!, &&, ||)

The operator! is the operator to perform the Boolean operation NOT, it has only one operand, located at its

right, and the only thing that it does is to inverse the value of it, producing false if its operand is true and true

if its operand is false. Basically, it returns the opposite Boolean value of evaluating its operand. For example:

!(5 == 5) // evaluates to false because the expression at its right (5 == 5) is true.

!(6 <= 4) // evaluates to true because (6 <= 4) would be false.

!true // evaluates to false

!false // evaluates to true.

The logical operators && and || are used when evaluating two expressions to obtain a single relational result.

The operator && corresponds with Boolean logical operation AND. This operation results true if both its two

operands are true, and false otherwise.

64

Bitwise Operators (&, |, ^, ~, <<, >>)

Bitwise operators modify variables considering the bit patterns that represent the values they store.

operator equivalent description

& AND Bitwise AND

| OR Bitwise Inclusive OR

^ XOR Bitwise Exclusive OR

~ NOT Unary complement (bit inversion)

<< SHL Shift Left

>> SHR Shift Right

 4.3 Control Statement

The if else Statement
This is used to decide whether to do something at a special point, or to decide between two courses of

action. The following test decides whether a student has passed an exam with a pass mark of 45

if (result >= 45)

 printf("Pass\n");

else

 printf("Fail\n");

Each version consists of a test, (this is the bracketed statement following the if). If the test is true then

the next statement is obeyed. If is is false then the statement following the else is obeyed if present.

After this, the rest of the program continues as normal. If we wish to have more than one statement

following the if or the else, they should be grouped together between curly brackets. Such a grouping is

called a compound statement or a block.

if (result >= 45)

{ printf("Passed\n");

 printf("Congratulations\n")

}

else

{ printf("Failed\n");

 printf("Good luck in the resits\n");

}

65

The for Loop

The for loop works well where the number of iterations of the loop is known before the loop is entered. The

head of the loop consists of three parts separated by semicolons.

The example is a function which calculates the average of the numbers stored in an array. The function takes

the array and the number of elements as arguments.

float average(float array[], int count)

{ float total = 0.0;

 int i;

 for(i = 0; i < count; i++)

 total += array[i];

 return(total / count);

}

The for loop ensures that the correct number of array elements are added up before calculating the average.

The while Loop

The while loop repeats a statement until the test at the top proves false.

As an example, here is a function to return the length of a string.

int string_length(char string[])

{ int i = 0;

 while (string[i] != '\0')

 i++;

 return(i);

}

The string is passed to the function as an argument. The size of the array is not specified, the function will

work for a string of any size. The while loop is used to look at the characters in the string one at a time until

the null character is found. Then the loop is exited and the index of the null is returned. While the character

isn't null, the index is incremented and the test is repeated.

66

 4.4 Functions

A C function definition consists of return value (void if no value is returned), a unique name, a list of

parameters in parentheses (void if there are none), and various statements. A function with non-void return

type should include at least one return statement:

<return-type> functionName(<parameter-list>)

{

 <statements>

 return <expression of type return-type>;

}

where <parameter-list> of n variables is declared as data type and variable name separated by a comma:

 <data-type> var1, <data-type> var2, ... <data-type> varN

The following program shows use of a function pointer for selecting between addition and subtraction:

#include <stdio.h>

int add(int x, int y)

{

 return x + y;

}

 int subtract(int x, int y)

{

 return x - y;

}

 int main(int argc, char* args[])

{

 int foo = 1, bar = 1;

printf("%d + %d = %d\n", foo, bar, add(foo, bar));

printf("%d - %d = %d\n", foo, bar, subtract(foo, bar));

 return 0;

}

67

4.5 Arrays and Pointers

To fully understand the workings of C you must know that pointers and arrays are related.

An array is actually a pointer to the 0th element of the array. Dereferencing the array name will give the 0th

element. This gives us a range of equivalent notations for array access.

There are some differences between arrays and pointers. The array is treated as a constant in the function

where it is declared. This means that we can modify the values in the array, but not the array itself, so

statements like arr ++ are illegal, but arr[n] ++ is legal.

Since an array is like a pointer, we can pass an array to a function, and modify elements of that array without

having to worry about referencing and de-referencing. Since the array is implemented as a hidden pointer, all

the difficult stuff gets done automatically.

A function which expects to be passed an array can declare that parameter in one of two ways.

Either of these definitions is independent of the size of the array being passed. This is met most frequently in

the case of character strings, which are implemented as an array of type char. This could be declared as

char string[]; but is most frequently written as char *string; In the same way, the argument vector argv is an

array of strings which can be supplied to function main. It can be declared as one of the following.

68

4.6 Structure

A structure type is usually defined near to the start of a file using a typedef statement. typedef defines

and names a new type, allowing its use throughout the program. typedefs usually occur just after the

#define and #include statements in a file.

Here is an example structure definition.

 typedef struct {

 char name[64];

 char course[128];

 int age;

 int year;

 } student;

This defines a new type student variables of type student can be declared as follows.

 student st_rec;

Notice how similar this is to declaring an int or float.

The variable name is st_rec, it has members called name, course, age and year.

Each member of a structure can be used just like a normal variable, but its name will be a bit longer. To

return to the examples above, member name of structure st_rec will behave just like a normal array of

char, however we refer to it by the name

 st_rec.name

Here the dot is an operator which selects a member from a structure.

Where we have a pointer to a structure we could dereference the pointer and then use dot as a member

selector. This method is a little clumsy to type. Since selecting a member from a structure pointer

happens frequently, it has its own operator -> which acts as follows. Assume that st_ptr is a pointer to a

structure of type student We would refer to the name member as

 st_ptr -> name

As we have seen, a structure is a good way of storing related data together. It is also a good way of

representing certain types of information. Complex numbers in mathematics inhabit a two dimensional

plane (stretching in real and imaginary directions). These could easily be represented here by

69

 typedef struct {

 double real;

 double imag;

 } complex;

doubles have been used for each field because their range is greater than floats and because the

majority of mathematical library functions deal with doubles by default.

In a similar way, structures could be used to hold the locations of points in multi-dimensional space.

Mathematicians and engineers might see a storage efficient implementation for sparse arrays here.

Apart from holding data, structures can be used as members of other structures. Arrays of structures are

possible, and are a good way of storing lists of data with regular fields, such as databases.

Another possibility is a structure whose fields include pointers to its own type. These can be used to

build chains (programmers call these linked lists), trees or other connected structures. These are rather

daunting to the new programmer, so we won't deal with them here.

70

Appendix A. wCK Communication Protocol

