Understanding wCK module and

C programming with RoboBuilder

RoboBuilder Co., Ltd.

L. OVeIVIEW.....ceeeeicececcaenrcecaececeaenane 3
L1 INEPOAUCTION ... et bbb 3
L2 STIUCTURI@ ... e st 4
1.3 REOQUITEIMIENT ...ttt es e st bbb 5

2. Understanding wCK...... - 6
2.1 ChanNG@ WECK ID ...t eessesasseesssseeses s ssssesss st st st 6
2.2 Change various WCK Parameters ...t e ssse s s ssssssssssssssssssssees 9
2.3 PID Gain Tuning and WCK ReSpoNnse FEAtUre ... seesisesessssesneees 10
2.4 WCK Free Motion Programming...........ceceseeseees sessssssssesssesssss st sssssssesssssses 17

3. RBC Firmware Study for User Created Robot . 22
3.1 Firmware and € Program ... seesse st ssse s ssse st ss st sssss st ssssse 22
3.2 RBC Hardware Structure and I/O MAP ... ssssssssssssssssessssssssns 25
3.3 C Programming With Motion File.................coocooi et 27
3.4 RBC LED Control — Understanding RBC I/O...........ccccoooiimrinninnsenienesees s sessesssssnenes 30
3.5 Control wCK Position — 8 Bit Command Communication.............cccoconineinnrnecnneirseenes 34
3.6 CONEIOI WOCK LED ...t et ess sttt 38
3.7 Configure wCK Parameters - Configure Command and Read Data............cccoooonrrrnnnnnnnee. 42
3.8 C Programming With Motion File................ccocoooe st 46
3.9 IR Remote Controller with C Programming..............ccccooniininecnneieeseseee e ssseeiseeseeees 52
3.10 Humanoid RObOt Maze ESCAPE ...t sttt st seses 55

4. C Program SUMMarY........ccccecerrnucccescssersersannces 61
B.1 VArIaBIESooieee ettt e 61
4.2 OPEIALOLS ...ttt s a e s et 62
4.3 CONIOl STAtEMENT ...t sttt s ssst e 64
A4 FUNCHIONS ...ttt bbbk e e bbb 66
4.5 Arrays and POINTEIS ...ttt sttt e ssssssens 67
4.6 STIUCTUIE ...ttt bbb bbb 68

Appendix A. wCK Communication Protocol . . 70

1. Overview

1.1 Introduction

This tutorial is for intermediate-advanced RoboBuilder user, who is already accustomed with
MotionBuilder, ActionBuilder GUI based programming, and for controlling the individual wCK module of

robot directly by C language programming.

First of all, user needs to understand wCK module (hereinafter, “wCK") properly. wCK is not a just a
part of Robot, but also, it has various useful functions itself. More robot project can be done as user

uses these wCK featured functions.

If, user understood wCK fully, let’s start the C programming with RoboBuilder.
By realizing all wCK functions with C programming, user learns C programming as well.
User learns from link up with MotionBuilder (*.rbm) file to humanoid robot maze escape

and IR communication programming in this book.

Lastly, basic C programming grammar and simple methods are introduced in this book in

order to help to C programming beginners.

1.2 Structure

Chapter 2.1. Change wCK ID
It describes how to change wCK ID parameter configuration.

Chapter 2.2. Change various wCK parameters

It describes how to configure 1D, Baud Rate, Over Load, Speed, etc parameters.

Chapter 2.3. Set PID Gain and Check wCK response time

It describes PID control theory and how to adjust PID value in accordance with PID gains.

Chapter 2.4. wCK free motion programming

It describes how to do the wCK direct programming without controller.

Chapter 3.1. Firmware and C programming

It describes general firmware’s definition and C programming structure for firmware.

Chapter 3.2. RBC hardware and I/0 MAP
It describes RBC hardware structure and I/O MAP

Chapter 3.3. C Programming with Motion file
It describes provided C programming project file structure.

Chapter 3.4. Control RBC LED (Project 3-4 RBC_LED)
It describes how to control RBC LED.

Chapter 3.5. Control wCK Position (Project 3-5 wCK Position)
It describes how to control wCK position for Robot motion.

Chapter 3.6. Control wCK LED (Project 3-6 WCK_LED)

It describes how to control wCK LED and Command packet communication.

Chapter 3.7. Configuration of wCK parameter (Project 3-7 wCK_Parameter)

It describes how to configure wCK parameter with C programming.

Chapter 3.8. Make C program with Motion file (Project 3-8 Motion_Program)

It describes how to include motion file into C program.

Chapter 3.9. Using IR controller and Understanding C program (Project 3-9 IR_RemoteCon)
It describes IR remote controller principles and how to change the configuration.

Chapter 3.10. Humanoid Robot Maze Escape Programming (Project 3-10 Maze)
It describes how to program maze escape programming for humanoid robot by using
RoboBuilder distance sensor.

Chapter 4. C Programing Summary

It describes basic C programming grammar for beginner.

1.3 Requirement

- RoboBuilder Kit (5710K or 5720T model)
- CodeVision-AVR C compiler

CodeVision C compiler can be purchased from www.yklogic.co.kr or www.hpinfotech.ro.

Free released version for students is not enough to support the examples in this book.

2. Understanding wCK

2.1 Change wCK ID

In RoboBuilder kit, wCK is set own ID from O to 15.

If necessary, user can change ID No. from 0 to 30 as user want to change.

X Requirements

) RBC (Control Box) : 1EA
wCK : 1EA

o wCK Cable : 1 EA
) RS-232 Serial Cable (PC cable) :1EA
° Window XP based PC and wCK Programmer software

Let's change wCK ID 2to ID 0. Connect wCK, RBC, PC cable and Power adapter as the below.

> User can connect any of connector in RBC box. But only one wCK should be connected.

Press PF2 button then, power on RBC box. Then RBC Box goes into PC control mode. PF1 LED
(Blue), PF2 LED (Orange) is ON together. (In wCK Programmer ver 1.34 or higher, this procedure is not
needed.)

Click “Basic Setting” tap in wCK Programmer.

wCK Programer v1.32

ComPart Check

Com Fart |Com ~|

Baud Rats |115200 -

Check Port
Command Pad
Target D Set |0 -
Shit Command Type |Move Targ0 =
[10bitMove [Move TorgD
Extl/0 [0 2
Target Position 127

Command Execute

127

25
Control Angle:

Setting & Programming

1 j SULDER

IBasicSEl:Iing Specials

| ActionCon | Grap

Scan ID [HonD - Scan Baudrate |NonBaud
Scan 1D ‘ Scan Baud ‘
Sertp |NonlD - St Badvate [MorBaud =
Set 1D ‘ Set Bavd ‘ Al ik ‘

Scan Speed [Non [Non
Scan Speed ‘

Scan Dverl oad NenDverload

Scan Overload ‘

Scan Gain MonGair [NonGait |NoriGaio

Scan Gain
[~ RuntimeChk

Pgsin _ Dgan_ lgain
St G NG| [NonE v | [Nont +

Ser Gain

i

Scan Boundary [NonUB [NanlB
Scan Boundary ‘

I FunimeChk groed accel
Sot Spoed Mon x| [Non ~
Sef Speed ‘ Mwﬂ“

Sef Byvert sz |NonOverLoa v

Sef Overl oad|

MM‘

Upper Lower

Set Boundsay Mol ~| [NonLE ~
Set Boundary ‘ A@'»ﬂ"

Return Value

After connected with PC COM port, click “Scan Baud”, then wCK Baud Rate is shown as the below.

wCK Programer v1.32

ComPort Check
Com Port |Coml -

Baud Rate |115200 -

Check Port

Command Pad
Taiget ID Set |0 -
8bit Command Type |Move Togl =
[~ 10bitMove |Move Tog0
Exl/ [0 A
TagetPosifon [127

Command Execute

127

Contral Angle

BasicSetting | SpecialSetting | ActionCon | GraphView | MotionPrograming |

Scan ID |NonlD -

Setting & Programming

te 115200

Scan Baus

ROED
BULDER

Scan Gain MonGair [NonGait |NoriG i

Scan ID ‘ Scan.Baud Scan Gain
I~ RuntimeChk
NonlD - ot Bowchate [NorBaud =] Pgain_ Dganlgain
Rk o fauchote ot Goim MonE =] [Horte =] et =

Set D ‘

Set Baud

Mﬂ‘

Scan Speed [Non [Non
Scan Speed ‘

Scan Overl oad NorOverLoad

Scan Overload

Sef Gain

|

Scan Boundary NonlB [Non(8
Scan Boundary ‘

I~ RuntineChk &g pocel
Sot Speee [Non 7] [Hon ~

Set Speed ‘ Aﬂ»ﬂ“

Sef Byer oz |NonOverLoa v

Sef Overl o3d| A8 »ﬂ‘

Upper Lawer

St Boandag [Norll ~] [NonlE +

Set Foundary ‘ A#‘nﬂ"

Return Value

X If “Try Again” message is shown, please check the wCK cable and PC cable connection.

If Scan ID button is clicked, it shows the present wCK ID as shown in the below.

Select desired wCK ID No. in “Set ID” in drop box, then click “Set ID” button. It shows “Good ID

wCK Programer v1.32

Command Pad

Target D Set |2 -
8bit Command Type |Move Torg0
[~ 10bitMove |MoveTorg v
WheelSpdlevel [0 -
Extl/0 [0 -
Target Position |127
Command Executs

127

754
Control Angle

‘ ' Scap D

Set 1l

Scan Baud |
Setfp |NonlD hd Sef Faudvate [NorBaud =

| Set Bauvd | Aﬁmﬂl’|

ComPort Check Setting & Programming ROBO
Com Part |Com - BasicSetting | SpecialSetting | ActionCon | GraphView | MotionPrograming | ULDER
Baud Rate [115200 =
Check Part | Scan Baudrate [115200 Scon Gain|NonGar [NorGar [NorGar

Scan Gain
I~ RuntineChk
Pgsin _ Dgain_lgsin

ot Gz |NonG x| [NonG v | [NorG

Sef Gain Aﬂﬁ

Scan Speed [Non [Non

Scan Speed |

Scan Overl oad MonOverload

Scan Overl oad |

Scan Boundary [MonlUB |NonlB

Scan Boundary |

I~ RunineChk 5. 4

Sef Speed

Sat Speed |Non >

Al
Non -

|]

Sef Overl oad |NonOverloa v

Sef Overl oadi Ai wﬂt|

Upper Lower

Sef Bourda |Nonl = | |NonlE >

Set Foundary | M-ﬂ1

Return Value
—

Setting!!!” message, then new wCK ID is shown in Scan ID drop box.

wCK Programer v1.32

ComPort Check Setting & Programming
Com Port [Comt - BasicSelting | SpecialSetting | ActionCan | GraphView | MotionPragraming |
Baud Riate [115200 = ,
Check Port | Scan D |0 - Scan Baudrate 115200

Command Pad
Target ID Set |2 -

8bit Command Type |Move Togd =
I~ 10bitMove |Move TorqD =
‘wheslSpdLevel [0 =
Extl/0 {0 -
Target Position |127
Command Execute

Scan 1D

| Scan Baud |

MorBaud =

ﬂl

Sof Baudrate

Set Baud

Scan Gain [NonGar [NonGar [NonGai

Scan Gain |
I~ RuntimeChi
Pgsin Dgan lgain

St mi N =] [Non =] [Nonk =

Sef Gain | Al mﬂxi

Scan Speed |MNon

Good D Setting!!!

LﬂadNunUverLoad

Scan Boundary (Mol [NonlB

Scan Speeg I n Overload | Scan Boundary
12 I™ RuntimeChk 500y Accel Upper Lower
Lot Speed m [N_D-nzl Sat fverd paed |NorOverlLoa = Sat Bounday W W
Sel Speed | M’»ﬂ1 Saf Oyenioadi »Wvﬂj .S‘efBoundag/l Al
Control Angle

Return Value
—

Now, wCK ID has changed.

2.2 Change various wCK Parameters

User can change not just wCK ID, but also Speed, Acceleration, Over Load, Boundary, PID gain, etc.
All these parameter configuration is done in same way.

{Z} wCK Programmer

COM Port Baudrate

Ot ~| 115200 -

Setting & Programming
ing | ActionCon | iew | Moti

ROBO
BLILDER

ing | Options |
@ CloseFort
Scanip |0 - Scan Baudrate |115200 Scan Gain |1 o o
Command Pad

TargetDSet |0 = ScanID | Scan Baud ‘ Scan Gain
I~ Runtime Gain
8hit Command Type [Move(Torq ~
[~ 10 bit Move 0 | El D | ~ Set Gai - = =
WheelspdLevel 1 | Set D ‘ Set Baud ‘ AllID Set Gain ‘ AllID ‘
Bxio [0 |

Target Position [127
B Scan Speed |0 60 Sean OverLoad |400 Scan Boundary |254 1
Command Execute

Scan Speed ‘ Scan OverLoad ‘ Scan Boundary |
127 ——
[Runtime Speed

Set Speed e e Sot Ovarlozd

Sat Boandary - -

Set Speed AlID

37 Ba 12 04 00 08 88 B2 A2 16 14 FF FF AA 55 AA 55

SetOverLoad | AHID Set Boundary AlliD
0

Control Angle

FF FF AR 55 AR 55 37 BAn 10 B4 68 A8 BB A1 81 M
00 00 60 60 ©1 06 60 60 00 3C 21 21 01 FE

Return Value

Changed parameter can be initialized to factory setting value as user click “Set Default” button in
“Special Setting” tap.

Command Pad

Target ID Set !ll -
8bit Command Type [Move(Torq » |
™ w0bitMove [1oveltom <
VWheelSpdLevel [ﬁ
Ca—
Target Position tmi

Command Execute |

Ext 0

127

Control Angle

COM Port Baudrate Setting & Programming o
[cous | [115200 -I naaicsmrnnlimcm| GraphView | MotionPrograming | Options | HEDER
@ Closeron | |

0 'I SeanExt ~i

|

ScanlD ‘ Scan Ext /0 ‘ Scan Pos10 ‘
Set Ext - I—J
Set Ext I/O ‘

—

Scan ProductInfo ‘

Set Default

FF

As “Set Default” function is used to initialize the various parameters at one time, it is useful to check

whether the parameters have been

AR 55 AR 55 37 BA 12 B1 DO 00 B0 B2 B2 17 15 FF FF AR 55 AR 55 37 BA 10 M1
@@ 7E 0B TE 32 48 0@ 00 OD 3C 50 50 @1 FE

Return Value

changed.

ag oa oo 01

nom

2.3 PID Gain Tuning and wCK Response Feature

When user gives the command to wCK to target point, wCK moves (rotates) to target position.

DC motors have the movement value as shown in the below.

Response Characteristics

300
290
280

Target
Position

270

I Motor Movement Position Graph I

T'Jq
@
=1

250 4
240 -
230+
e 220
210

astions Speed [

200 ra

1490 /

Target Position Excess
{Over Shoot)

Start Point

30

35 40
Sample Mumber

=

55

Target Position {(Shuttling Time)

Motor needs some time to move to the target point.

method has been studied in order to reduce this time.

Because of this reason, many motor control
wCK is applied PID control method, which is

used in many industrial facility. Further, user can configure PID Gain parameter and study the various

motor features as wCK Programmer has GraphView function.

1. Requirements

wCK

Please refer to the wCK Programmer user manual during this procedure.

RBC Box

1EA
1EA

wCK Cable : 1 EA
RS-232 Serial Cable(PC cable)
Window XP based PC and wCK Programmer software

1EA

Power Adapter and PC cable as shown in the below.

10

Connect the wCK, RBC,

X wCK can be connected any connector in RBC Box.

Run wCK Programmer software.

ZIwCK Programmer

Setting & Programming @
BasicSelting | SpecialSetting | ActionCon | GraphView | MotionPrograming | Options |

[scon 1) [scanBavacate [115200 [sancain [[0 [0
Scan ID I Scan Baud | Scan Gain !
I S

SR e e

SetlD | Set Baud ‘ AlD ‘ Set Gain | "D|

Target Position (127

Scan OverLoad 400 rgmm 254 1
Command Execute |
= Scan Speed Scan Overl oad JI Scan Boundary ||
; Speed Accel \Uppeer Lowver
Sat Spead. > I b Sat OverLoad - Sat Boundary - -I
Set Speed [AllID ‘ SezOvarLond‘ MD‘ Set Boundary | Al D ‘
Control Angle J

[FF FF AR 55 AR 55 37 BA 12 04 00 DO 00 02

B2 16 14 FF FF AR 55 AR 55 37 BA 10 04 00 00 00 &1 ™
00 B0 08 0O B 00 08 BD OB 3C 21 21 @1 FE

Feturn Value

Click button after select available COM Port.

Click Scan ID, Scan Baud, Scan Gain, Scan Speed, Scan Boundary buttons in order. It shows the
present values of wCK.

For PID control study, input Upper 254, Lower 1, then clickt “Set Boundary”.

If Boundary width is narrow, wCK movement range becomes narrow. Therefore, set maximum
width as “(254, 1)".

Scan Boundary 254 1

Scan Boundary

Upper Lowwer

Set Aoundary |254 - n -

Set Boundary AllID

X Boundary means wCK movement range width.

11

2. wCK Programmer function for PID control

® BasicSetting Dialogue to set PID Gain.

® AcionCon Dialogue to move wCK to target point. .

® GraphView function to check wCK movement.

I ActionCon and GraphView Tap I

I wCK Programmer

PID Gain Configuration window I

COM Port Baudi ate =
[][0 =] | BasicSetting | Speciats 1280
D closeport | | -
sanm [0 = Sean Baudrate 115200 Scan Gain |1 ol
Command Pad
Targetm et [0 - Scan ID ‘ Scan Baud ‘ Scan Gain
[~ Runtime Gain
Bbit Command Type |Move({Torg ~ B
o [) —
S swone [<[]
S ‘ SecEad | Arp ‘ Set Gain | Mpl
7
Target Position ’1277 I_” l_ﬂD [_‘DI] '_2“ ’_1
: 1:‘“ | Scan Speed | Scan OverLoad ‘ h Scan Boundary i|
I Runime Speed
Spesd Accal Uppeer flmr
stmes | =]] | swomsoss [3] | somnary [[o
Set Speed | Awl Set OverLoad ‘ MD‘ Set Boundary | AllID ‘
Controt At

FF FF AR 55 AR 55 37 BA 12 04 00 00 00 02 02 16 14 FF FF AR 55 AR 55 37 BA 10 04 00 0D 00 01 &1 N
60 00 60 00 G8 00 3C 21 21 M FE

@4 88 00 00 00 88 M

Feturn Value

@ Set wCK PID Gain.

COM Port Baudr ate
1 lcoM1 - me -

@ cioseron |

Command Pad

Target ID Set ﬁ -

Fbit Command Type |Move(Torg -

‘WheelSpdLevel
Ext I [(I -

Contrel Angle

[] e 5=

Scan D

Scan Gain |1 0 0
Scan Gain
I Runtime Gain

Pgain Dgain Igain
Set Gain |1 vIU vlo -

SetGain | Al |

1) Match wCK ID and input '10" in Target Position.

2) Click “Sean Gain" button to check the present Gain value.

3) Input Gain value, then click “Set Gain" button.

12

@ Command wCK movement to target point

-} wCK Programmer

COM Port Baudiate | 1 I Setting & Progr i '
joow <] fusawo -] | BasicSetting| Spm.lswm‘] ; ActionCon |F|qﬂ'\\ﬁﬂ| MotionPrograming | Options | RO |
@ Closeron | |.n Latl®) R
Tal Sean weK aiPosall | perioaall | | {5
Command Pad =1 werAarPozilion Feriod SampleNum Increment | A = ID| j |
Tuaupse o) (& p —
0 127 2000 C] 0
Bbit Command Type | Move{1oid » NoniD w2 L7 2000 &0 o —_—
[~ 10 bitMove [Miove1org - NoniD 127 21 2000] 0] § | ActionRun I
s [ﬁ NoniD 127 12 2000 1] o -
Nonid 127 27 2000 &0 o
Btio [0 - NoniD 127 127 2000 ® o
Target Position ,‘0— NoniD 127 17 2000 B0 1]
NoniD 127 jE) 2000 & 0
Command Execute NoniD 127 127 2000 B0]
127 NoniD 127 127 2000 80 1]
MNonlD 127 12?7 2000 80]
NoniD 127 127 2000 & 0
NoniD 127 127 2000 & o
NoriD 127 127 2000] 0 2 |
i Toraiomlo -] [GBI>]| smctvones positon sena [
Control Angle - =]
FF FF AR 55 AA 55 37 BA 10 B4 00 00 00 61 01 01 00 00 00 90 01 00 00 00 08 3¢ 21 21
01 FE 00 00 00 0A 00 B4 00 64 DO B9 00 09 28 46 02 62 00 09 00 6A
|
Fetum Vabie

Click “ActionCon” tap.

It shows the connected wCK ID.

Select that wCK ID.
Click “ActionRun” button.

mTmo N ® >

(® Check “GraphView”

IwCK Programmer

Click “Scan wCK” button, and wait around 10 seconds.

Input desired wCK “Target Position”.

COM Port Baudi ate

Setting & Programming

Target Position F' o
Command Excoute |

127

p
oNEZREHEBRENEREEE

jcomt =] riszo -] ing | ActionCon GraphViow | MotionF ing | Options |
_@conww | oo |
Response Characteristics
Command Pad | e Live
— Responze
Target ID Set ﬁ - ~— Responze Torg Line
Response Speasd Line
#bit Command Type |Move(Torg =
I~ 10 bit Mowe |Move(Torg = g ViewGraph

WheetspdLovel | z = [2 W[0-263 deg - sitPrys

Bxto |0 - _g - | ReponseTime(ms)

([
SteadyErrorSum

o

)
13 SaveGraph

1) M
Control Angle

|FF FF AR 55 AR 55 37 BA 10 D4 00 00 00 01
01 FE 00 00 00 Gn 0D OA 00 6% 00 09 OO 09

01 @0 00 @0 00 @1 00 B0 OO @0 3C 21 21 -~
k6 02 02 00 09 00 o

Return Value

Click “GraphView” tap

Select proper scale.
Click “SaveGraph” button to s

o N w >

After check the wCK response graph, initialize wCK position in order to set Gain value.

Click “ViewGraph” button. Then it shows Graph.

ave the BMP image, if necessary.

Pad panel, click “Command Execute” to initialize the wCK position.

Target Position |1l]

Command Execute |

13

In Command

As user follows below examples, user can understand wCK movement features in accordance with PID

parameters.

Graph #1 [Pgain:10 / Dgan:0 / Igain:0] Graph #2 [Pgain:20 / Dgain:0 / Igain:0]
Response Characteristics — Response Characteristics
£ : = e =
= et - R | e
-t Responge Speed Line. 20 1 mmsn:'mm
e — Pt ;
e [owow] R R R R R s
£ 00 = P
i [0-255 4w oonPis <] S0 ¥ i Pttt | B dag VabtPhy =]
S:: E'%zizm'mm?n; 5 e, ; [RenonseTimeims)
I I ! 2100 !
- i { i ! s + o /
o) AL W : i Respense Characteristics sof -
Nz i wl /7 Response Characteristics.
0 et = - ! il =
I SwukREN L GERER e | ™ P
0 31015 W B N % 40450 H WIS
‘Somele enber e Sargie momr s
Em g
g:«: [EE— S el
+ Response Time : 2500 (ms) i %:
o . =¥ « Response Time : 750 (ms) im
¢ Error Sum: QO ot sl oy
)/
5 + Error Sum: 48 o
» E) “ -«) = El = i
e
o EEE) 2
aren
Graph #3 [Pgain:30 / Dgain:0 / I1gain:01] R . .
Graph #4 [Pgain:60 / Dgain: 0 / lgain:0]
Response Characteristics
Wi —Twod PostonLie Response Characteristics
 RevpmsoPostinLie
x0 i b b) ' — Responte Torq Line: Eeed
260 Rezponss Spesd Line 00
0. 200 3
20 E 2 = = 3
e 2 Ea = ;
S " 0 e 2.0-333 deg 106 Py v = £
I ——— 2] Sy
1 + ¥ o0 e Lo teponseTime(ms} 180
éwm 725 gm T ReponseTime(ms) |
i3 SteagyEnarsum 5 1w 7 i
e ™ /
@ 2 J <100 /- H ;
: Response Characteristics - o + ! = S
2 10 © /' Responte Charactaristics
o ! i »» pud 1 6 =
0 5 10 15 20 25 0 35 40 45 S0 55 6O 65 70 75 = o H H -
Sangtiniee = CiunRERswewswe0E |
B i ‘Samgie tuber m
= - T g ~
= 2
" P R i =
+ Response Time : 725 (ms) o b > i
= EY + Response Time : 725 (ms) iz
¢ Error Sum: 23 L B o
L « Error Sum @ 2 e
2 R el i
P . SRR
Graph #5 [Pgain:80 /f Dgain:0 / lgain: 0]
Response Characteristics
= T vostontne
= Responee postion Lne|
- — Rezponze ToraLine
0! Fesponse SpeediLine
B
n ERY | Sl e T TR [
g0 : [veworpn |
L g S 250 et [2-0-333 009 1001t Phy =]
gm: i
160 o ¥ +f ReponseTima(ms]
§|m ./J . Em—
554 7 SteatyEmorsum
80 A >
L -
40 e Response Characterfsties
af/ : =
o ! LY g
0 5 1015 025 W I5 40 45 0 % 60 65 1075 Ly
Sl tuber =)
i
| - =
. =
+ Response Time : 725 (ms) ST
-
« Emror Sum: 16
& » - = E = »
mon s

As P gain value is increased, wCK response time is decreased. But “Overshoot” value is increased as

shown in the above graph. This means, it gives faster response, but target position value is unstable.

14

Let’s change P gain and D gain together.

Graph #6 [Pgain : 10 / D gain : 30 [1gain:0] Graph #7 [Pgain:50 [Dgain:10 / 1gain:0]
Response Characteristics Respense Characteristics
2 : 'Rf!mm Nu:ﬂ::: 20 . ;ﬁN Pvaxil‘:m
- st — Respense o Lne 0 S et i) — Fasoones Toraliis
s asponse SpasdLine g 33 Response Speed Line
20 - ALIE T T i
g [Viewomsn §2 Eyat e e R e ViswSraph
:f: 2.0-333 0z 1001 Phy v < f:) [2 033340y 1060 Py <]
1 —
i G —
a2 SsmEmoisum L #
B0 a
w0 z LA J
&0 Response Characteristics ' Response Characteristics
o bt £
: , : g -
0 5 1015 20 25 X0 35 40 45 0 %5 K0 BN 3= 0 S5 10 15 20 25 30 35 40 45 SO 55 B0 €5 70 75 e
Samgle Nunber i Sagie Hunber »
e g
£ | o ERLEE —]
s -
I Iz
Bl §a
» Response Time : 850 (ms) </ . —— *a
P = + Response Time @ 725 (ms) »
* Error Sum @ 42 = s
= i bt » Errer Sum: 9 m
E) -2.‘:0“‘"-/5 w e 0 s B M . 3'5‘_“.’&"_’ N . .
Graph #8 [Pgain:50 / Dgain: 50 / ILgain: 0] : - " ,
Graph #9 [Pgain:50 /| Dgain:70 / Igain:0]
Response Characteristics
& —Twpe Posion Lre Response Characteristics
Retparapostin s =
: R e = =) e
= Spaes s SRR Z Response ToraLie
20 — s Response SpseaLie
Loy i"| [2:0-223 909 100 Py <] i §5 ¥
§waa s ! & ReponseTimams) gm b, 2.0~333 deg - 10bit Phy =
E 140 3 Z 160 ol : HEEE RN I e
¥ ;)
310 ; 1 yirgrageeey 140 5 4 : 4 +
80 / > & 100 / ¥
s} = $ Y / j24 J
b If AR 3 S0 i 8 ‘Respense Charsctariities il e {
» s sl /A : 4 : H 4 Rusponte Charactaristies
ol — < 204/ 3 + it s
R R B p ; |
Eample Memoor - 0 5 10 15 20 25 30 35 40 45 50 55 60 €5 7O 75 A
e L e e Snpie b -
Em o B O G
: =
B [
« Responss Time @ 725 (mg) o . ol %-"
b i + Response Time @ 750 (ms) -
« Error Sum: 2 o, e
" = = = = « Error Sum @ 39 .
s I T
merinte

If user change P gain and D gain together, “overshoot’ value is decreased relatively.
But target position value is still unstable.

15

Graph #10 [Pgain: 40 [Dgain:70 [Igain:2]

B Respanse Charscteisics S Let's change P, D and | gain value together.
= :EEEEZE?:::l WCK response time is decreased, there is no
gzg."; ; “overshoot” value and it goes target position
3; ; T‘mli exactly. wCK response feature would be much
nl A —— i nm improved if PID gain is applied, if user use PID
R tune-up method.

» Response Time : 750 (ms)

* Error Sum: 0

P, I, D has each characteristics, respectively, as shown in the below.
® P Gain (Proportion Gain) : It reduces wCK response time.

® | Gain (Integral Gain) : It reduces tolerance.

® D Gain (Differential Gain) : It reduces “overshoot” value and make it stable.

Just increasing the Gain value does NOT means that is has good response feature.
(In example graph 10, P gain is 40, this is not so high value.)

Each parameter affects each other. Therefore, users should tests several times to optimize the gain
value, and do PID control study.

16

2.4 wCK Free Motion Programming

wCK has free motion programming function itself. When user does free motion programming, RBC
should be selected “Non-Standard Platform (PF2 orange LED on)” mode. Then, wCK does movement
independently as long as electrical power is provided.)

X Requirements

® RBC:1EA / wCK:2EA |/ Cdssensor:1EA
® RS-232 Serial Cable (PC cable)
® wCK Programmer Tool

Below is | MotionPrograming tap for wCK free motion programming.

] wCK Programmer v134

COM Fort Baudrate Setting & Programming
[caiis] [115200 =] | BasicSetting | SpecialSetting | ActionCon | GraphWiew] MolionProgiaming | Options | s
@ Spenfort 1 Scanfort | | _ K]

J Scin No. of Kigtristion ,_ Iain Instruction Sub Instruction Data
Command Pad L1]0:None h o ;I It ;I
Iu Motion Scan
Target ID Set - wzlo:none E| IIJ j b j
Bpit Command Type |Move(Torg ~
[10 bit Move iﬁ Set No. of Instruction =1 L3]o: Hone Al [o =l =
WheelspdLevel | - welo none El [o ~lie |
o [0 - Motion Set
= L& 0 : Mone EIE ~llp =
Target Position E'I.??
Command Execute [Lajl:tne H |D j ¥ j
Clear All Instruction
127 L7|0: Mone A [o =P ~
8|0 Mone 4]0 =l]

Return Value

If you look at green box in wCK Programmer, you can see “Main Instruction”, “Sub Instruction”,

“Data”, and it has 8 lines in left side from L1 to L8. wCK does 8 motions (L1~L8) in order.

17

Let's find out what is included and the meaning of “Main Instruction”, “

The following is free motion programming logic table.

Sub Instruction”, “Data” columns.

Motion Command(1 Byte)

Motion Data(1 Byte)

Main Instruction

Sub Instruction

Data

0: None

0

X

1: Position Control

Speed(0~4)

8 bit Position Value

2: Motion Type

1(Passive).
2(Power Dowm),
3(Wheel CCW),
4(Wheel CW)

The Speed value in Wheel Mode(0~15)

3: Delay Time(Max 4,095 ms)

Upper 4 bit delay value

Lower 8 bit delay value(in ms)

4. DIO

X

2 bit external port output value

5: Position Conditional Decision

1=
20>")
3(<")
4=
5('<=")

8 bit Position Value

6: A/D Conditional Decision

1(==")
2"
30<")
40>="
5('<=")

8 bit external port A/D input value

7: No of Repetition

X

0 : Infinity, 1 to 254(No of repefition)

8: End of Program

X

X

Main Instruction had main instructions (0~8), and Sub Instruction is for detailed instruction for main

instruction. Data is position or control values. User can input the values by keyboard.

Example 1] wCK movement from 100 degree to 160 degree in every second with speed 1.

Setting & Programming
BasicSelting| SpecialSetting | ActionCon | GraphView MotionPrograming | Options |
Scan o, of Instruction ID_ Main Instruction Sub Instruction Data I .
L |1 Contral Position(Torg 0~4 j |1 =l |EO - Speed : 1, Pos. :50
Motion Scan ‘
L2[3: Delay (8ms =] e ENEE * 0.008 sec * 125 = 1 sec delay
Set No. of Instruction | ! |_3|1 Control Position(Tong 0=4 j |‘I = |‘|'TD * Speed : 1, Pos. : 150
L4 [3: Detay 8ms) -] [o =] 1z ;H 0.008 sec * 125 = 1 sec delay
Motion Set
|_§|D Hone '| |I; .'| |3 'J

Hone

Clear All Instruction
u7 [0 Hone =0 ~[o -
Le [0 Hone =] [0 =] o]

Run 4 lines motion

18

If programming is finished as shown in the above, click “Motion Set” button to save in wCK.

Good Motion Setting! Please power cycle wCK module to effect motion change

After above message box, click “OK”, then power off and on. Then wCK starts free motion itself if

power is supplied.

In order to delete free motion programming, click “ [Clear All Instruction | button, and

select “0” in | Set No. of Instruction | to delete the motion.

Let's try simple robot with free motion programming.

[Wheel Robot 1]

Prepare two wCKs, wCK IDO, wCK ID1. Assemble the wCK as shown in the below. This Robot will
not move because it does NOT include RBC Box. However, it would be possible without RBC if you

use free motion programming method.

100

Free motion programming is for each wCK. Therefore, two different programming are needed for two-
wheeled Robot.

19

In order to move forward, one wCK should move in clockwise direction, and the other wCK should move

counterclockwise direction. For backward movement, programming in vice versa.

Let’s program two wCKs for forward movement and backward movement in every second interval

when power is supplied.

i Ko, o Irvpiriaceic ,0_ Main Instruction Sub Insinaction Data
L1 [2 Passhe Breakvmeaicow vme = [3 ~1[=] A wCK ID 0, Rotate counterclockwise Dir./Speed : 2
Motion Scan
4 Lz [3 Dtay iBems) =0 =2 ~] B.wCKIDO 0.008 sec * 125 = 1 sec delay
saeo. ofmtruction [J =] 15[z Passie Brearimesicewiime =] [+ |k =] Cowek ID 0, Rotate clockwise Dir./Speed : 2
L4 [3: Detay (Bms) < =iz« DowCKIDO, O.008 sec * 125 = 1 sec delay
Motion Set
Lg|3 None ﬂ |3 ﬂ [3 j
L6 [0 Neae =] [o o ~|
Clear All Instruction
| Ot | oo s g | o | —c
L&[0: Nene - [0 j [o j
Scanlio. ol wstryction [0 Ieain Instruction Sub lnstruction __ Diata A wCK ID 0, Rotate clockwise Dir./Speed : 2
’_- 11 [2: Passie Break vmesiCCvr e =] [+ Bl -] ' /5
Motion Scan . i I
Motion Scan B ety e IR 3 B. wCK ID 0, 0.008 sec * 125 = 1 sec delay
C.wCK ID 0, Rotate counterclockwise Dir/Speed : 2
Set No.of Instruction |2 =] 13 [2 Passive Break '.'.HealCQ'.‘.'_'.'.hEllm 2 - WK |
[y ID O, 0008 125 =1 lelay
143 Delay iams [0 B vk ' - sec delay
Motion Set
LE [0 Hone :] IID ;] |’J j
Move Forward
) 15 [0 tione =l =l 5] =Counterclockwise (0)+Clockwise (1)
Clear All instruction
vr [0 reone EIE ~][o -
o el: B IMove Backward
N = = = y L
Lo tone Bl =Clackwise (0) + Counterclockwise (1)

X ForID 0O and ID 1 wCK, it should be programmed respectively.

After programmed it as the above, supply the power into wCKs, then Robot will move forward and
backward direction.

[Wheel Robot 2 — Sensor based Robot]

wCK has own I/O port itself. (Digital Output 2, AD Input 1). As you use AD Input, Robot will move as
light level. In this example, “Cds sensor” is used.

9V Battery
wCK wCK :
Cds Cds

20

For Cds sensor, solder with resistance 5.1k as shown in the below.

T R e e ey i e S

/ ETEES
" e

If lux. is high, resistance is decreased.
Therefore, AD value is lowered by voltage
distribution law.

Pl e W e

Program the wCK in wCK Programmer as shown in the below.

Scan lo. of Instruction ,07 Main Instruction Sub Instruction Data Scan Ho. of Instruction ’D_ Main Instruction Sub Instruction Data

L1 ‘ﬁ Compare AD (== = < == <=) j |2 j |17El j L1 ‘5 : Compare AD (== 2 % =5 %= | j |2 j |1TD j

Motion Scan Motion Scan
L2 ‘2 Passive, Break'."."heeICC".A."Wnsj |1 j |El j L2 ‘2 :Passive EIreak..'.A.'neeICC‘.“.'.‘.".'hej |‘I j |D ﬂ
Seto. of instruction [~| 13[6: Compare AD (==72=2==) ~|[5 | [170 =] | setwo.ormstruction [1 ~| 5[5 Compare D (=== s == ¥ |5 ~| im0 =
L4 ‘2 Passive Elreak'."."heeICC".A."Wnsj |4 j |5 j L4 ‘2 : Passive EIreaK.'.A.'neeICC‘.“.'.‘.".'hej |3 j |5 j

Motion Set Motion Set
Ls\n Mang j |D j |El j |_5‘El:None j |U j |D ﬂ
160 Hons = = - Ls|0: None o =l =l

Clear All instruction Clear All instruction

L7 ‘D None j |U j |D j L7 ‘U.NUHE j |D j |U ﬂ
Lg |0 None ~| [o =l o - Ls[0:none | [o ~| o =

Robot measures wCK light level. Therefore, Robot moves depends on AD set value “170” as

programmed in the above.

User can make various wCK application Robots if you use various wCK functions.

21

3. RBC Firmware Study for User Created Robot

3.1 Firmware and C Program

Firmware is generally defined as a micro program that is saved in ROM memory. As an aspect of
program, it is almost same as software, but it has much closer relationship with hardware. Firware is
faster than software, but slower than hardware. And it is not comfortable for general user. It is quite
dependent on hardware, therefore it should be changed when hardware component is changed.

Firmware can be considered as a software that is close to hardware.

Easy To Use (User Friendly)

Hard-ware Firm-ware Soft-ware

e haster Speed

If you use RoboBuilder Firmware Upgrade Tool, user-created firmware can be saved into RBC and is
possible to operate wCK. This motivates user to study firmware easily. Generally, user needs certain
electronic boards or other hardware devices to study firmware, but RoboBuilder user does NOT need

because RBC and RBC Firmware Tool are everything that user needs to study firmware.

If user-created firmware is not working at all, user can simply recover it with RoboBuilder published

firmware version in RoboBuilder website.

Robabuilder)
RBC;l;n;;uara \
or | B :,;';,::;"::.;:%]_a
User User
[se]_[se] P

Firmware Firmware
(CRE) (Hex)

How general user can create own firmware or how it can upload the firmware into RBC box?
Let’s find out in next pages. The below is the simple structure of RoboBuilder firmware generation.

22

Compile Procedure - For Computer

TR _f ses H I see. ASM I sss HEX l

I iAssembler I

{Source Code) File! {Run File)
I I
~ T P T
I I
User | Compiler I Firmware Upgrade Tool
I |

® \Write C language program.
® User compiler (ex. CodeVisionAVR), to generate .ASM, or .HEX file.
® Upload firmware file (*.hex) into RBC Box.

For C coding, user should know C language programming well. Please refer to the various C programming

books in the bookstore.

In this example, we assume that user knows basic C programming method.

Mainc = C general structure |
r,.- //— external file (c or . h file)
#inc lude xxx h
 Re-define constant, variables, functions.
#define ...
Variable .<
Dec laration /f Define Global Variable
Variable declaration
/¢ Function Declaration
Variable declaration
A CPU runs Main function first
/¢ Program terminated when main function is finished
Int main(void)
Fun {
IAain Function *J.
| }

23

Below is LED ON/OFF program flows by C language.

Mainc =2 C general structure

WVariable
D laration

Run
Main
Function

Example) Main.c =» LED blinking example

extemal file (¢ or _hfile

#Finclude xoch

Re-clefine constant, vanables, functions
Zcefine ...

Define Global Vanable
Varable declaration

Function Declamation
Vaniable declaration

CPU nuns Main function first
Program teminated when
main function is finished

{

ATmegal2s IO and Memory MAP header file
#include <megal?8 h>

##f Re define hardware dependant bit

Fff tpin no.) and memory

#cefine LED_PORT_IO DDRA

#define LED_PORT PORTA

#define LED_ON(x) LED_PORT |= (1<<x)
#define LED OFFix) LED_PORT &= ({0<<1)

Dec lare Global variable for Main function

Unsigned Int LED «nt=0;
Dec lare function
Void Delay(unsianed int dt) {

Pl'i."'{ll'dl'l'i starts
{

while(dt--); }

LED_PORT IO = Oxff
On/OFf (0--T) LED
Tor(LED cnt=0; LED cnt <8 LED cnt++)
{
LED. ON(LED cnt); Delay(100j;
LED_QFF(LED cnti; Delay(100}
}
Program terminated after 8 LEDs On/Off

LED port dir. setup

#include <megal28.h> is header file to use “DDRA”", “PORTA".

Complicated sentences is redefined with “#define” word to understand program easily.

This program is for 8 LEDs On/Off one time.

below.

If “#define” word is not used, program would be like the

Example) Mainc = LED blinking example

#inchile <megal2s he-

Int mainivoid)
{
Unsigned int df=100
DDRA = Oxff;
PORTA |= (1<<0); whileidt--1; =100
PORTA |= i1<-=1}; whileidt--; dt=100
PORTA |= (1<<2; whileidt-- dt=100
PORTA |= (1<<3); whileidt--; =100
PORTA |= (1<-<4) whikeict--1; =100
PORTA |= (1<<5); whileidt--1; =100
PORTA |= i1<<6); whileidt--; dt=100
PORTA |= (L<<T); whilidt--; dt=100
b

PORTA &= (0==0);, whileidt--); dt=100
PORTA &= (0<-<1); whileilt--); dt="100
PORTA &= (0<=<2); whileilt--); dt=100
PORTA &= (0=<3); whileidt--) dt="100
PORTA &= (0<-<4); whikeilt--); dt=100
PORTA &= 0<<5) whileidi--) di=100;
PORTA &= (0<<6); whileidt--i: dt=100
PORTA &= 0<<T); whikeilt--); dt="100

3.2 RBC Hardware Structure and 1/O MAP

Below is RBC hardware block diagram.

—»| U&ART
Power Supply(12y) = Resulaior L ITSTIRT TP SOUND
Frotector 5 QUT 1 o I
I
Overcurrent Reaulatar H
Pratectar a3 oUT
Audio
RETTILLRE EITLLEIELE AMp —»| Speaker
UART{RZ-232) ke
fransceiver |
UART1 | | UARTO UART(TTL)
EBluetooth
Modem
Power
MCU — " wK Robot Module
PUSH BUTTON 1 i Sich
FUSH BUTTON 2 i Serial
p— ‘/0ltage A7D EEPROM
PED Sensar A0 +
Power
» 7| Switch
+ PSD Sensor
 —

User can understand how this hardware is connected. RBC is connected with power supply, RS-232

communication, TTL UART, wCK power line and PSD sensor.

Below is RBC micro-controller ATmegal28 PIN allocation and I/O map.

TEO =
E = ? (=]
ErTRARIE @R R
UL LUOUQOQ gea
oococococooco (s alyal
Qe ZEE
oo
ScEProporrerz82Y
fdd<C< i d >
anncooAcOooAaaOOnn
e ZBBCEREGEBEIREERS
PENC]1 o i 48 [PA3 (AD3)
RXDO/(PDI) PEO] 2 47 [PA4 (AD4)
(TXDO/PDO) PE1 L] 3 46 [PAS (AD5)
(XCKO/AIND) PE2 [4 45 [PAE (ADB)
{OC3AAINT) PE3 L] 5 44 ['1PAT (ADT)
(OC3B/NT4) PE4 |6 43 [PG2(ALE)
(OC3C/ANTS) PES] 7 42 M PC7 (A15)
(T3/INTE) PES | 8 41 [1PCE (A14)
(ICP3INT?) PE7] 9 40 [1 PC5 (A13)
(88) PRO] 10 32 [PC4 (A12)
(SCK) PB1] 11 38 [PC3 (A11)
(MOs1) PE2] 12 37 [PC2 (A10)
(MISQ) PB3] 13 36 [PC1 (Ag)
(OC0) PB4 [] 14 35 [1PCO (A8)
(OC1A) PBS] 15 34 1 PG1(RD)
(OCIBIPBEL 16, o o 0 v v 0 = b © = @ & & — o3 [PGOWR)
o v SN NN NN N NN N MM
Do o000 0o 00 o000 oo™
[I-:r OO M =9 =0 9 T W W
sddlwgzl o000 0000
Loowsfigaoooaacan
car-u XK SECAPESER
- 2o EEEELXRE -
o aa 222200~
800 SSEsS<=Sx
3 =r SRR -
8 22FE

25

11O

PIN No. PIN Name Dir Description
1
2 (RXDO/PDI) PEO | Communcation with wCK, Sound IC (YNN Model)
3 (TXDO0/PDO) PE1 (0] Communcation with wCK, Sound IC (YNN Model)
4
5 (OC3A/AIN1) PE3 (0] Speaker Output (YNN Model)
6 3 Axis sensor (SCK)
7 3 Axis sensor (SDI)
8 (T3/INT6) PE6 | IR Remote Controller Receiver Module (38kHz)
9 (ICP3/INT7) PE7 | Bluetooth Signal Receiver
10
11 (SCK) PB1 0 For ISP
12 (MOSI) PB2 (0] Power Supply 24LC256T-I/SN (High : ON, Low : OFF)
13
14 (OCo) PB4 (@] Battery Charging (High : Charging ON, Low : Charging OFF)
15 (OC1A) PB5 (0] PSD Sensor GP2Y0A21YKOF Power Control (High : ON, Low : OFF)
16 (OC1B) PB6 (@) Sound IC Reset (High : Disabled, Low : Enabled)
17 (OC2/0C1C) PB7
18 TOSC2/PG3
19 TOSC1 /PG4
25 (SCL/INTO) PDO (0] For Serial EEPROM Communication (SCL)
26 (SDA/INT1) PD1 /10 For Serial EEPROM Communication (SDA)
27 (RXD1/INT2) PD2 | Communication with PC
28 (TXD1/INT3) PD3 (@) Communication with PC
29 (ICP1) PD4
30 (XCK1) PD5
31 (T1) PD6
32 (T2) PD7 O wCK power supply (High : ON, Low : OFF)
33 (WR) PGO
34 (RD) PG1
35 (A8) PCO
36 (A9) PC1
37 (A10) PC2
38 (A11) PC3
39 (A12) PC4
40 (A13) PC5
41 (A14) PC6
42 (A15) PC7 (0] Power LED (Red)
43 (ALE) PG2 O Power LED (Green)
44 (AD7) PA7) Error LED (Red)
45 (AD6) PA6 (0] Run LED (Green)
46 (AD5) PA5 o Run LED (Blue)
47 (AD4) PA4 0 PF2 LED (Orange)
48 (AD3) PA3 0 PF1 LED (Red)
49 (AD2) PA2 0 PF1 LED (Blue)
50 (AD1) PA1 | PF2 Switch (High : Not pressed, Low : Pressed)
51 (ADO) PAO | PF1 Switch (High : Not pressed, Low : Pressed)
54 (ADC7/TDI) PF7 | For ISP

26

55 (ADC6/TDO) PF6 o} For ISP

56 (ADC5/TMS) PF5) For ISP

57 (ADC4/TCK) PF4 (0] For ISP

58 (ADC3) PF3 I MIC OUT(0~5V)

59 (ADC2) PF2 | GND

60 (ADC1) PF1 | Input Voltage (=wCK Output Voltage x 560 / 1560)
61 (ADCO) PFO [PSD Sensor - GP2Y0A21YKOF Signal (0~3.2V)

In order to program firmware, user should know I/O MAP, however, it is difficult to memorize all of the

above. Therefore, check the necessary part when user program the certain firmware.

3.3 C Programming with Motion File

Download the C Programming with motion file data from RoboBuilder website (Support - Specialist Tip

section).

In “cv_exam” folder, below files are located.

cy_ex1,pr

/J' S oK CodebisionaV Project Fils

"""F‘"’] oy e tut

BIAE ZM

OkB

If CodeVisionAVR is installed, cv_ex1.prj is shown as the above. Click “cv_ex1.prj".

File structure would be as the below.

CodeVisionAYE - cy_ex

[J Eile Edit View Eroject
k| ple|d| &) |~
Mavigator l Code Templates] Clipboa

=&Y CodevisionavR
= @ Project; cv_exl
=] Motes
[tainc
q Camm.c
| D0
[§ Other Files

Example project has three files (Main.c / Comm.c / DIO.c).

27

Double-Click “Main.c”.

9 ginclude
10 finclude

12| #include
13 #include
14 finclude
15 finclude
16 #include

17

18 s/ Flag
19 bit

20 bit

21

22 45 Bucto
23 womn

24

28 4/ Tine
26 wonD

27| EYTE

28 EYTE

29 EYTE

30

| s/ UART
32 char

33 EYTE

34 EYTE

3B EYTE

36 char

“<gtdio.h>
“<delay. ks

"Macro. h"
"Main.h"
"Comm_ h"
"Dio_ k"
"math.h"

F_PLAYING;
F_DIRECT C_EN;

B Input=—=========—===—==—=—=——=—=x

gEtnlnt ;

Heasurement --—-—--—--———-—-—————-——

oqMSEC ;
ogSEC;
oMIN;
gHOUER;

Communication —----—-=-======-=

gTz0Buf[T=0_BUF_ZIZE];
gTx0Cnt ;

gqRx0Cnt ;

gTx0BufId:;

gRxO0Buf [R<0_BUF_ZIZE];

1| sf===========z====z===z====z===z====z===z====z===z==========s=============s===S==S==SSSsSsssSsssssss=sszsss=s
2 rr RBoboBuilder MainController Sawmple Program 1.@

< Z00s.04.14 Fobobuilder co., ltd.

4 sy Tap Size = 4

5 ff===F===============

[finclude <megalZ8_ hx

7

8 s/ Ztandard Input/Output functions

Ff Bhow the motion running
A wCE direct control mode (l:iAwvailable, O:Not awvailable)

A4 UARTO transmission buffer

A UARTO transmission idle byte number
A4 TARTO receiwing byte number

A UARTO transmission buffer index

A4 UARTO transmission buffer

It looks quite complicated code, however, you can just take a look at the outline now. Most “#define”

word is include

d in “xxx.h” file.

28

Press [F9] to compile it, and click [OK].

Mavigator l Code Templates] Clipboard Hiztory]

It shows each include files, used variables and used functions.

there are many “#define” words.

=&Y CodevizsiontvR

- @ Project: cv_exl
=] Motes
=[] Main.c
+ Included Files
+-2F Global Wariablesz
+-F{} Functions
+ B Wwiarnings
= D Comm.c
+ Included Files
' Global Wariables
+-F{} Functions
+ B WwWiarnings
=-[DID.c
+ Ihciuded Files
i Global VY arisbles
+-F0) Funchions
+ B W armings
[Other Files

If you check out [Macro.h] file,

Iy

// DATA TYPE

Iy

#define BYTE unsigned char

#deftine WORD unsigned int

#define DWORD unsigned long

#deftine BYTEP unsigned char=

#define WORDF unsigned int=

#define SBYTE signed char

#define SWORD signed int

¥

ff BIT SET

i

#define SET_BITO(x) (x I= 0x01)
#define SET_BIT1(x) (x 1= 0x@2)
#define SET_BIT2(x) (x |= Ox04)
#define SET_BIT3(x) (x 1= 0x@8)
#define SET_BIT4(x) (x I= 0x10)
#define SET_BITS(x) (x 1= 0x20)
#define SET_BITA(x) (x = 0x40)
#define SET_BIT7(x) (x 1= 0x80)

ai

Dividing the code with several files are effective way to mange and understand it.

29

3.4 RBC LED Control — Understanding RBC 1/O

Let’'s change the example project and control RBC Power, Run, Error, PF1 and PF2 LED button.

¥ Requirements
® RBC : 1EA
RS-232 Serial Cable(PC cable)

® RBC Firmware Upgrade Tool
® CodevisionAVR Complier
® Published RBC Firmware

Let’'s check out RBC 10 MAP first for controlling 5 LED in RBC.

42 0 Power LED (Red)
43 0 Fower LED (Green)
44 0 ED (Red)
45 0 D (Green
48 0 Run LED {Blue
47 O PF2 LED (QOrange]
48 o PF1 LED (Red)
45 O PF1 LED (Blue)

Itis “PIN No”, “PIN Name”, “|O Direction”, “Description” in left order.

For example, Power LED(Red) is connected with ATmegal28 No. 42 - PC7 Pin.

Power LED (Red) is

On / Off in accordance with Pin output. However, user can not check this only with 10 MAP.

Therefore, let's find out in source code level.

30

EVIGHOR | L emplates | Y] * U e e e e e e e e
Iw] I_l_ 2 / Hardware depensnt definitions (Main h)
15X CodeWisionaVR 3/ //mmmnmmnanmsne AN AR NSRS RSN AR
= (% Froiect cv_exl //gdetine EXT_INTO_ENABLE SET_BITE(GICR)
Hotes: Fr/fdefine EXT_INTO_DISABLE CLE_BIT6&{GICR}
= @ Mainc &
=) Inchaded Fies 7 #detfine FF1_LED1_ON CLR_BITZ(PORTA} /¢ BLUE
8 sdefine PFL_LED1_OFF SET_BITZ (PORTA)
9 #define PF1_LEDZ_ON CLR_BITI(PORTA) #f GREEN
10 #detine PF1_LEDZ_OFF SET_BIT3 (PORTA)
11| #define PFZ_LED_OH CLR_BIT4 (PORTA) Jf YELLOW
12 #detine PFZ_LED_OFF SET_BIT4 (PORTA}
13 #define RUN_LEDL_ON CLR_BITS (PORTA} £ BLUE
14 #define RUN_LEDL_OFF SET_EITS (PORTA)
18 sdsfine RUH_LEDZ_ON CLR_BIT& (PORTA} #f GREEN
16 #define NN _LEDZ OFF SET_BITE (PORTA)
g ! 17| #detine ERR_LED_ON CLR_BIT? (PORTA} #/ RED
1 A Global Var 18 gdefine ERR_LED_OFF SET_BIT? (PORTA)
B Funtions 18 #define PWR_LEDL ON CLE_BITZ (PORTG) /i GREEN
& E Warnings 20 gdetine PWR_LEDL_OFF SET_BITZ (PORTC)
&[] Comme 2] #define PWR_LEDZ_ON CLP_BIT7(FORTC) /7 RED
[Irchuded Fles 22 gdsfine PWR_LEDZ_OFF SET_BIT7 (PORTC)
F Gilobal Variables 23 gdefine PED_ON SET_BITS (PORTB) // Power Supply Control for Distance Sensor
- F Functions i' 20 gdetine PED_OFF CLR_EITS(PORTE) // Power Supply Control for Distance Sensor
E- B Warrings o
& [} bioe % #define CHARGE_ENABLE SET_BIT4(PORTE) // Charging Porc
% BB Inchded Fles 2] #define CHARGE_DISABLE CLR_BIT4 (PORTE}
§ Gicbal Vaiisbles || | 28 :
@ E0 Funclions 28 sdefine U_T_OF_POWER 4500 fF Adaprer Recogniticon Scandard Voltage sy
& a Warnings M fdefine M_T_OF_POWER BE0d #/ Encugh Power Standsrd Woltage [wV)]
i o 31| #detine L_T_OF_POWER 100 FF Minisus Standard Voltage [eV)
= (3 Other Files i
[manh fdetfine MAX wCK 31 /7 wCK ID Max. Husbacrs
L LUl DL D DRI L DL LU L DL U DL LD DL L LDl LIl DL L LR L iDL L LI DLl L L
'’ UART Communication
O

If you check out “Main.h”, all lines are used “#define”. Power_LED (Red) is defined as the below.

#define PWR_LED2_ON CLR_BIT7(PORTC)
#define PWR_LED2_OFF SET_BIT7(PORTC)

Therefore, you use “PWR_LED2_ON”" in source code.
This meaning is clearing PORTC 7 Pin (Output “0"). In “Macro.h”, itis defined as

#define CLR_BIT7(x) (x &= OX7F)
CLR_BIT7(PORTC) is defined as “PORTC &= Ox7F".
CLR_BIT7(PORTC) means ‘0’, output 0XXX XXXX in PORTC. (Xis ‘1’ or ‘0’, Don't care). PORTC is
hardware name in ATmegal28. In order to understand “PORTC &= Ox7F", please refer to the C
programming with ATmegal28 books.

In source code, use PWR_LED2_ON for Power_Led(Red) on, and use PWR_LED2_OFF for power-off.

Let’s revise the code for programming LED blinking in RBC.

31

fi=-
#f Main Funseien £/ Hain Function
Ffmm e J i o

woid sainiveid) |
woRD i, IMEEC;

void mainivoid) {
WORD i, IMSEC:

HW_inie{) /f Hardwars Tnicial
SW_inied); #f Varishle Tnicial HW_init () /f Hardware Initialization
Basm{“sei®}; SW_indt{); J# Variable Initialization
TINZE I= 0x01; 7 Timerd Overflow Imterrupt hetivaien
Basn(“sei®);

[T TIMSK |= 0x0L; /4 Timer Overflow Interrupt kotivation
e (1) { Speciallode (}:

IMZEC = GNEEC; .

PeadButtondl ; £ Remd Button whalei1}(

ToUpdated); ¢ 10 Suavus Updata | =

while | LASEC= =gNSEC) ; AMSEC = gMSEC;

t PeadBucten(); /4 Pead Button

J TolUpdaced) ; Sf I0 Stamus Update
while (IHSEC==gHZEC) ; *

PUR_LEDZ_ON; delay_ms(500);
PUR_LEDZ_OFF; delay_us(500) ;
1

CPU starts from Main(),

WORD (unsigned int) I, IMSEC,
HW_init(), SW_init(), SpecialMode()
Power_LED(Red) On/Off loop in every 0.5 sec.

¥ #asm(“sei”); TIMSK |= 0x01; is hardware dependency sentence.

Revised part is “/*, */" and Power LED (Red) On/Off loop.

Press, “[SHIFT]+[F9]".

1 ' - g5
E| ple|d| 8| o~ |n/e] aln) o)

“3 o] o5 wlw|%(m| Som| 2|
Navigator | Code Templates | Clipboard History | ggga { P
= §¥ CadevisionaA 37)
= (8 Project: cv_exl 368
Notes 389
= Main.c g;ﬂ Compiler IAssemb\er Programmer
G- Included Fies 372 Chip: ATmegal2s ~ PlAE
#-<iF Global Yariables feric] I = O/ AR
rogram type: Application g
(= Fi} Functions 374 Memory model: Medium
[warings g;g Optimize for: Speed
= [} Comme . i3] (sdprintf features: float, width, precision
2 Inchuded Files a7l | (s)scanf features: int, width
FI{; E\obal WVariables 373 Pramete cher to int: No
= unctions el char is unsigned: Yes X
[wamings 3@ s/ ool | [Bbit enums: Yes
= [Dioe S — Enhanced core instuctions:on &
Bl Included Files 3838 void mail |Automatic register allocation: On
i Global Yariables 384 WOl
i+ Fi} Functions 385 4624 linels) compiled
2 386 HW_i} Mo errors
w0 [§ wamings b
= [3 Other Files ggg SU_i} 122 waming(s)
= [maciok 389 P | S
X =7 |Bit variables ares: 2h ta 2h
¥ Global Variables 390] TINY |Bit variabl -1 byt
Fi} Functions 351 Itzerislos sleoihibytoa)
= ;‘0“ . ggg 5020 bt Stack area: 1000 o 4FFh
'y Global Variables B whill [Date Stack size: 102 byte(s)
o FU) Functions P Estimaled Data Stack usage: 20 byle(s)
= main.h
36|
P Global Yariables 297 Global variables area: S00h to 7ESh
) Functiors 398] Global variables size: 745 byte(s)
= [stdagh 399
Xy Global Varisbles 400 Hardwars Stack arsa: TEAR to 10FFh
F{} Functions 3812 Hardware Stack size: 2326 byte(s)
= [commh 3
Xy Global Varisbles :Bi) 1 Hean size: N hutel =) ¥
i Ft} Functions A5 : .
#% Progiam the chip] X Cancel
Messages | :

{Wammg D:\Business\HoboBuiderll = 2 Ve &
“warminn N-4Rusinrss AR nhnRuildsrH = 2L

M HEREES M H ZE TES Evam_v1.0[2 £ ev_examiarciMain.c378): uneferenced local waniable |

q
NERE M H ERERS M T THR W eam o1 TR R ey meambarsibMain o404 reeteraneed Innal varishle

32

In Information window, click “Cancel”, then run RBC Firmware Upgrade Tool.

Connect PC and RBC with PC cable, then power on RBC.

£ ABC Firmware Upgrade Tool

Connection 1.
Com Pont Selection: [[Cam | Lf]

Baud FAate Selection: | [115200 -l

2
Firmwars File 7 NHZ IEEWExam v [EIWov_exarn¥srciiain, hex

’ [Click here and Push Reset Button |]

Status: |dle

Exit

Check COM PORT and Baud Rate,

Select “Main.hex” file that is just made.

Click [Click here and Push Reset Button].

Use tweezers and press “Reset” button that is located between PF1 and PF2.

BBC Firmware Upgrade Tool E|

Flash File successfully downloaded,

® Later, it shows message box.

If succeeded, Power_LED (Red) is blinking in every 0.5 sec. In RBC, 8 LEDs are equipped. Try all

other LED blinking in several ways.

% If you would like to recover with normal published firmware, please download from RoboBuilder
website (Support — Download section).

Then upgrade the firmware by using RBC Firmware Upgrade Tool.

33

3.5 Control wCK Position — 8 Bit Command Communication

Revise the example project file to control wCK position.

% Requirements
® RBC:1EA / wCK:1EA
® RS-232 Serial Cable(PC Cable)
® RBC Firmware Upgrade Tool
® CodevisionAVR Compiler

wCK is smart actuator module through RBC UART communication. Therefore, user need to know the

communication between wCK and RBC in order to control wCK.

Firstly, user should know the ‘Packet-Communication’ concept.
Packet-Communication is receiving and transmitting the pre-engaged information in order.
For example, let's say command ‘01’ “Move wCK ID 0", and command ‘10’ is “Stop wCK ID 1”.

By doing this way, packet-communication would be very effective way to communicate each other.
Let's see how RBC and wCK communicates between them.

Download “wCK module protocol table file” from RoboBuilder website.

(Support — Tips for Specialist Section)

Bl wCK protocol definition

Command byte 1 byte2 | byte3 byte 4
7lslslal3]2]1][ol7ls]l5]4lal2]1]ob7]6l5[4]3[2] 1]
e header Torg D target position check sum
Position Move [eees 0~30 0~254 (note1)

Let’s find out what this table means.

For example,

RBC commands “Move to 200 position with torque 1” to wCK ID 01.

This can be re-written as follows;

OxFF(header) + 0x21(Torq(1l)+ID(1)) + OxC8(Target Position(200)) + 0x69(CheckSum)

We do NOT know what this means, but wCK ID 01 moves to “200” position with torque 1.

34

Firstly, RBC sends Header ‘OxFF’, then Torque, Target Position and CheckSum in order to wCK.
Therefore, user should follow the communication information sequence.

Let's see the below firmware source to control wCK.

gatar | Code Templatesl 4 I L4 i
— r i Communication & Command Functions
fg CodelfisiondyR i
@ Project: cv_ex1 ’
. T2 Notes finclude <megalZs.hs
17 Maine finclude <string. hr

#include "Main.h"
#include "Macro.h"
#include "Comm.h"
#include "p_exl.h"

]l Included Files

e
woid sciTx0laca(BYTE td)
{

while (| (DCSROAG (1<<TIDRE))) ; F4 Tdle status until the previous transmission is finished.

-4 Global Yariables TDRO=td;

1

il

3

4

5

B

7

g

9

0

1
I
#/ Tramsmitting one character through serial port

2
228 |
23 while { | (UCSRE1AG (1<<UDRE})} ; /4 Idle status until the previous transmission is finished.
24 ULRl=td;
250
26
27|
Xy Global Vaitples || 25 4/
: . 29 ¢/ Idle status function to receive one character through serial port
[-Fi} Functions S
E =3 Wamings 31| EYTE scilxOReadyiveid)
- Other Files 2B
D mairth 33 TORD stareT;
et startT = gM3EC;
while { | (TCSROAG (1<<EXC)} }{ 7/ Idle status to receive
35
N 3 if (gMEEC<startT) |

In “Comm.c” file, there is “void sciTxOData(BYTE td)” function.
“void” means there is no return value. And “BYTE td” means input data to be processed.

Let's understand this briefly that hardware send data if data is input for ‘td’ variable.
For example, if you want to send ‘200’ to wCK, just input “sciTxOData(200)".
To move wCK ID01 to ‘200’ position, it sends 4 hexadecimals.

M wCK protocol definition

1 gfeﬁ) Eyfeﬁ) Eyiea ‘_'l
L) AEE NEENEG FEEAEANE iAENERAE
=]

I . header Torg target position check sum
Position Move OxFF 0—30 0-254 Tnote1) 1

!

Command

oxFF || Torq: 1 [1211 || Position : 200 || @®yte2 Xor Byte3) and ox7F |

[w01 [oooor || 11001000 |

oxFF || ox21 I oxes (0x21 ~ 0xC8) & Ox7F |
oxFF || 0x21 Il 0xC8 0x69 |
Eﬂr B SEENH)
=]
S Hex] ODec Odct OBin @ 0word ODword O Wored 3 Byte
Omw Owe [[[Bsckssace] [€ [c]
(=] -]
=)0] =]
== 0] =]

Sending data : [OxFF] + [0x21] + [OxC8] + [0x69]

35

Therefore, user uses “sciTx0Data” function and data “OxFF, 0x21, 0xC8, 0x69” for programming.

Let's program that wCK moves ‘200’ position and moves '50’ position.

Press [SHIFT] + [F9] to generate firmware file.

£ Main Function

femmmmmmmmmememm—mmmmm=mmmms=s=s==s—=mm=m=m=—=s=m===—==m====m========

void main(veid] |
WORD 4, MNSEC:

void mainiwoid) |
WORD i, 1HSEC:

HW_init i) ; J¥ Hardwars Imicializaciem
W _indeil: £/ Verisble Imivislizscicn HM_imitd): /4 Hardware Initializacion
SW_imicd);: f4 Variable Inicializacion
Basmiteeit); -
TIRSH = Ox0ls k¢ Timert Overtlow Inverrupt Aevivarion
BasR("sai"h;
SpacislMedai) TIMSK |= Ox0Ll; Ff Timer0 Owerflow Interrupt Actiwvation
'uhmj,. SpacialMode i),
LESEC = gEEEC;
BaadBureeni) # Basd Bumeon while (1} {
Islpdatell £ T0 Soatus UFDATE e
whi Lo { IHEBCungHSEC) 1 IMSEC = GNSEC:
! ReadButton() ; /7 Read Button
PYR_LEDZ_OM: dulay_s(500) ; IcUpdatail; Ff I0 Scatus UFDATE
PWE_LIDZ_OFF; delay_msi500); while (IMSECe=gMSEC) ;
-

sciTx0latu(Oxte)

#eiT=0DaTa (D=L
sciTx0bacm(Oxcd)
sciTx0Dacal0x63)

PUR_LEDZ_OM: delay_ms{500);
PWR_LEDZ_OFF;: delay_ms [S0D) ;
seiTx0Daca (Dxid)
sciTx0Data(0x21) |
SCATZ0DaTa(0=32)
sciTx0latm(0x13)

PUR_LEDL_ON; delay ms{500);
PUR_LEDL_OFF; delay ms (800 ;

RBC Power_LED will blink and wCK moves left and right side continuously.

However, it is very uncomfortable to calculate hexadecimal values every time it changes movement

values. Therefore, put one function in “Comm.c” file and declare this function in “Comm.h" as shown in

the below.
e i BYTE scikx0Readyiwodd);
Jf Bbiv Command Posicion Howve Punction BYTE sciRzlReady(vodid):
77 Input : torg ID, Position void SendOperCud(BYTE Datal BYTE Dara?);
77 tutput : Nows void SendSerCud(BYTE ID, BYTE Datal, BYTE DataZ, FYTE Datad):|
o B B vold PosSand{BYTE IDP, BYTE Speadlavel, EYTE Posicionl;
woid PositicnMove (BYTE torg, BYTE ID, BYTE position) void PassiveModeCndfend (BYTE ID):
q void SynePosSend(veid)

WORD PosRead{BYTE ID);

void CetHotionFronFlash(veid)
void SendTCain{wodd) ;

void SsndExPortD(vodid):

vodd CatScensFronFlash{wodd);

BYTE CheckSuam;
ID = (BYTE) (torg << 5) | ID;
Checkium = (ID * posicien) & Ox7L;

sciTx0DataiOxte) ; void CalcFrameInterval (woid) :
seiTx0Daca {I0) ; vodd CalcUnicMove (voeld);
sciTx0Datai{position); void HakeFrame{vodid} ;
seiTx0Daca{CheckSum) ; void SendFrase(void) !
void M BasicPose (BYTE PF, WORD HOF, WORD RT, BYTE TQ);
void Peritienllove (BYVTE morgq, BYTE ID, BYTE positien); I

If you know C language operations <<, |, » and &, you can understand the above function.

36

Let's revise the code in “Main()” function as the below.

T e

S Main Funstisn

= e

wodd mainiwodd) |
WORD i, AMSEC:

HE_sinie{}; #f Hardwars Inicializsvien
SW_inici); 4/ Variable Initialization

Fasm{“sei®);
TIASK |= Ox01;

Specialfode i)

i Le {1} {
e
AMSEC = gMIEC;

ReadBussani) £ Paad Burton

IoUpdace(); S I0 Status UFDATE

while (IHSEC==gHERE)

=

FEETE0DAE & (0%LE)
sciTx0Daca(0x21)
soiTziDacaiOxed)
reiTx0Datai0xEd)

DH‘R_LEDZ_OH,' dnlq!_-l (500) ;
PUR_LEDZ_OFF; dalay ms(500) ;
sciTxODacn(Oxfs)
seiTz0DacaldxZl) I
FeiTz0Daea (0x32)

sciTx0Daca (0x13)

FWE_LEDL_ON; delay ms(500) ;
PER_LEDL_OFF: dalay_ms(500) ;

e e
£F Main Function
______________ S ——
wodd main(vodd)l |
L) i, IMSEC:
H¥_imit i) £/ Hardwars Initialization
oW _imie) Ff Wariable Inivializavion

fasni*sei®};

TIHZE = O=0l:
Ff TimerDd Overflow Interrupt Activation

F¢ Timerd Owarflew Interrupe Astivaticn

Fpeciallodei) ;

whidle (1) {

—)

"~
INZEC = gM3EC:

PeadBurtoni) ; Ff Read Burton

TaUpdara () /¢ T0 Zrarus UPDATE

i Lo { IHEEC R ngHEED) ;

*y

PositdoniMovall, 12001 A Torque 1, ID 1, Positicn 200
PUR_LEDE_OH: delay_ms (5000 ;

FUR_LEDZ_OFF: delay_ms (500} ;

PosivionMowad{l,l B0} Ff Tergue L, ID 1, Posizien Sﬂ

PUR_LEDL_ON: delay_msi5000
PUR_LEDL_OFF: delay_ni (5000

If you revised all source code, compile the code and make the “*.hex” file.

Download this firmware file to RBC as you use “RoboBuilder Firmware Upgrade Tool".

The above-right side C code is much easier than left side C code to understand.

37

3.6 Control wCK LED

% Requirements
® RBC:1EA / wCK:1EA
® RS-232 Serial Cable (PC cable)
® RBC Firmware Upgrade Tool
® Code VisionAVR Compiler

As wCK position control, let's control wCK /O PORT (LED) through packet communication.

Actually, RBC and wCK use interrupt communication, therefore it increases CPU operation efficiency.

Then, what is “Interrupt”?

[Priority] A Process > B Process [Priority] A Process < B Process

CPU Process CPU Process

B Process
V. A4

A Process

Atmegal28 is a CPU that processes one instruction at one time. It could not process two tasks
at the same time. But what would be happened if “B” task should be done when CPU is in the
middle of processing the “A” task? It stops “A” task, then process “B” task first if “B” task is more

important. This is called “Interrupt” method.

Depend on task importance, CPU possession is changed. Generally, main() and external functions are

less priority than certain hardware function. RBC-ATmega 128 CPU can decide this priority.

Controlling wCK position is “Polling” method.

But if you use “Interrupt” method, it can response much faster from the environment change.

38

Let's see the “Polling” method code and “Interrupt” method code in the below.

void PositionMove(BYTE torg, BYTE ID. BYTE position) void IOwrite(BYTE ID, BYTE IOchannel)
¢ I
L i
BYTE CheckSum; BYTE CheckSum;
10= (BYTE)(torg <{ 5) | ID: ID=(BYTE) (7{{5) | 1D}
CheckSum = (ID * position) & @x7f; I0channel &= Gx03;
CheckSum = (IDM@9 I0channel®I0channel)&0x7+;
sciTx@Datal Oxff): ;
sciTxoDatal 107 gTxBBuf[gTxOCnt |=HEADER; gTxBCnt++;
sciTxBDatal position); gT:-cIEIBu.-'[gTatEIEn'-.fID: gTxBCnt++;
sciTxBDatal CheckSum); gTxBBuf[gTxeCnt]=108; gTxBCnt++;
gTxbBuf[gTxéCnt]=10channel; gTxBCnts+;

} gTxBBuf[gTxeCnt]=10channel; gTxBCnt++;
gTxBBuf[gTxaCnt]=CheckSum; gTxBCnt++;
1

T £x

id sciTxeDatal(BYTE td) 9TxEBUTIdx++; i .)
:Dl seafuivats sciTxBData(gTxeBuf[gTx@BufIdx-1]);
while(! (UCSRBASI1<SUDRE))) ;

UDRE=td; }

interrupf [USARTE_TXC] foid wsarte_tx_isr(void) {
if(gTmid st) {
whilei ! (UCSRBAG(1SCUDRE))):

}

UDRG=gTx0BUT| gT#OBUTIAX];
gTxBBuT Idx++;

else i‘figT§CBu‘[ux==ng:l:n‘.i-{
. . ; gTxBBufldx = 8;
1Byte Data Load == Call function manually gTxBCnt = 8;

All data are loaded.
Call transmission interrupt function automatically.

It looks that ¢ source code of Polling method is shorter and simple.
However, Interrupt method is faster since it uses Data Load method and Function calling process is

more effective way. Transmission interrupt function is as the below.

interrupt [USARTO_TXC] void usart0 tx_isr(void) {

When 1 byte data transmission is completed,
interrupt function is run automatically.

if((gTXOBufldxX <(gTx0Cnt)){
Transmitted data number < Data number to be transmitted

((while('(UCSROA & (1<<UDRE))); |

Check whether the data transmission 1s completed

UDRO = aTx0Bufl aTx0Bufldx I
g TxOBufldx+4;

Transmitted data number + 1

)
else if(gTx0Bufldx==gTx0Cnt){

Transmitted data number == Data number to be transmitted
= Check data transmission completed
ngOBuﬂdx = 0 itialize transmitted data number

ngOCnt =0 Initialize data number to be transmitted

]

Process from transmitting the first data to the second data, process time is different depends on
automatic or manual. Process time is accumulated for this reason. So, CPU is used 100%, or
sometime, 80% used. Handling RBC and wCK means that it makes the communications between RBC

and wCK smoothly. Using interrupt method is more effective way for handling wCK.

39

For more detailed information about Interrupt method, please check out ATmegal28 books.

Let’s control wCK-1108T, wCK-1111T module LED through 1/O Write protocol.

In “Comm.c” file, write the function as the left side, declare the function as the right side in “Comm.h" file.

ff Expansion command I/0 write function void
ff Input: ID, IOchannel ;E#g
// Output: None BYTE
veid I0writs(BYTE 1D, BYTE IOchannel) e

1 3
BYTE CheckSum; void

10=(BYTE) (7¢<5) | ID; :Eiﬂ
10channel &= @x@3; WORD
CheckSum = (ID*108"[0channel*I0channel)&8x7F; yoid
i _— void
gTxBBuf[gTxBCnt |=HEADER gTxelnt++; void
gTxBBuf[gTxeCnt 1=1D; gTxeCnT++; void
gTxBBuf[gTx8Cnt]=108; gTxBCnt+s; void
gTxBBuf[gTx0Cnt |=I0channel: gTxBCnt++: void
gTxBBuf[gTx@Cnt]=10channel. gTxACnt++; void
gTxBBuf[gTxeCnt |=CheckSum; gTxBCnt++: void
void

gTxBBufIdx++;

sciTuBDatalgTxBBuf[gTxBBUFIdx-1]); vold

sciTx8Datal(BYTE td);

sciTx1Datal(BYTE td).

sciRxBReady(vodd):

scifRx1Ready(void)

SendOperCmd(BYTE Datal.BYTE Dataz):

sendset(md(BYTE ID. BYTE Datal. BYTE Datal. BYTE Data3);

PosSend(BYTE ID, BYTE SpeedLevel, BYTE Position):

PassiveModeCmdSend (BYTE ID):

SyncPossend(void)

PosRead(BYTE ID);

GetMotionFromFlashi{void).

sendTeain(void):

SendExPortDiveid);

GetSceneFromFlashivoid);

CalcFramelnterval (veid):

CalcUnitMovel(void);

MakeFrame(void);

sendFrame(void);

M_BasicPose(BYTE PF, WORD RT, BYTE TQ):
i . $TE position);

10writel BYTE ID. BYTE I0channel):|

WDRD_EQF,

Let’s analyze | IOwrite(ID, I0channel) | function.

void [Owrite(BYTE ID, BYTE 10channel)

{
[BYTE CheckSum| unsigned char 8bit checksum
ID = (BYTE)(7 << 51“ ID; | Write wCK ID on sub 5 bit to control
Shift 5 bit left side
Overwrite on ID variable
10channel(8&= 0x03] I10channel & 0000 0011 = 0000 00XX
[/ Upper 6 bits are don't care, Activate sub 2 bits
CheckSum =[(ID*100*10channel*10channel)8:0x7t;)
CheclkSum = (ID Xor 100 Xor I0channel Xor I0channel)} And 0<7F
gTx0Buf[gTx0Cnt]=HEADER: gTx0Cnt++;
gT=Buf{0] = OxFF
gTx0Buf[gTx0Cnt]=ID; gT=<0Cnt++;
gTx0Buf[gTx0Cnt]=100; gT=<0Cnt++;

IO Write Command Mode 100
gTx0Buf[gTx0Cnt]=I0channel; gTx0Cnt++;
gTx0Buf[gTx0Cnt]=I0channel; gTx0Cnt++;
gTx0Buf[gTx0Cnt]=CheckSum; gTx0Cnt++;
gTx0Bufldx++;
sciTx0Data(gTx0Buf[gTx0Bufldx-1]);

}

40

void main(void) {

i

WORD i. LMSEC:

HN_init{):
sW_initl);

#asm("sei”).
TIMSK |= ex@1;

SpecialMode():

while(1){
I
IMSEC = gMSEC:
ReadButton();
IoUpdatel):
whilel IMSEC==gMSEC) -
f
PositionMovell. 1. 288):

PWR_LEDZ_ON: delay_ms(588);

PWR_LED2_OFF. delay_ms{588);

PositionMove(1, 1, 58);

PUR_LEDY_ON; delay_ms{508)

PWR_LED1_OFF; delay_ms{588);

Please make “*.hex” file and download to RBC.

41

void main(vold) {

WORD i. ImseC:

H_initl):
SW_init():

#asm("sei”);
TIMSK i= BuBl;

Specialliode();

while(1){
i=
1MSEC = gHSEC;
ReadButton()
IoUpdate():
while(1MSEC==gMSEC);
*/
PositionMove(1, 1. 288):
10writa(1, 8);
PER_LEDZ_ON: delay_ns(588):
PWR_LED2_OFF; delay_ms(588);

PositionMove(1, 1, 58);
1owrite(1, 3);

PWR_LED1_ON; delay_ms(588);
PUR_LED1_QFF; delay_ms(508);

wCK will move from 200 position to 50 position as wCK internal LED is blinking.

3.7 Configure wCK Parameters - Configure Command and Read Data

¥ Requirements
® RBC:1EA /| wCK:1EA
® RS-232 Serial Cable(PC Cable)
® RBC Firmware Upgrade Tool
® CodevisionAVR Compiler

If wCK ID has been changed, existed programs wCK position control and wCK LED control does NOT
work. wCK ID information is included in packet.

Therefore, it does not work if wCK ID is not matched.

Let’s check the communication protocol first. 1D set protocol is as the below.

Command header [mode ID mode Byted CheckSum

T
v I

D Set OXFF 7 0~30 2 0-254 = byled

6 byte data is transmitted totally.

[header] + [mode | ID] + [mode] + [newlID] + [Byte5 (newlD)] + [CheckSum]

First [mode] means Configure Command, second [mode] means ID Set.

In “Comm.c” file, below source code is included.

42

£ wCE Parameter Configuration

£f Input : Datal, DataZ, Datald, Data
Ff Dutpuat : None

4

woid SendfetCmd (BYTE ID, BEYTE Datal, BEYTE DataZ, BYTE Datal)

{
BYTE Check3um;

IL=(BYTTE) {7==<5) |ID;
Checkium = (ID*Datal DataZ*Datal)al

gTx0Buf [gTx0Cnt | =HEADEER.;
gTx0Cnt++; £

gTx0Buf [gTx0Cnt] =IL;
gTx0Cnt++; rr

gTx0BuE [gTx0Cnt 1=Datal;
gTx0Cunt++; i

gTx0Buf [gTx0Cnt 1=Dataz;
gTx0CHE++; £

gTx0Buf [gTx0Cnt | =Datal;
gTx0Cmt++; £

gTx0Buf [gTx0Chnt] =Check Sum ;
gTx0Cnt++; rr

Data to be transmitted are 6 Bytes. 2 Bytes are Header and CheckSum, and in “SendSetCmd” function,

xTE;

Increase

Increase

Increase

Increase

Increase

Increase

byte

byte

byte

byte

byte

byte

mamber

number

b er

rmamber

manber

nuanber

to

to

ta

to

to

to

be

be

he

be

be

be

transmitted.

transmitted.

transmitted.

transmitted.

transmitted.

transmitted.

Configure Command (mode(7)) is shifted left side automatically. Therefore, you should

decide “ID, Datal, Data2, Data3".

If you check out communication protocols again, “Mode(12)” value should be input in Datal.

In Data2 and Data3, you can input ID No. to be chal

nged.

SendSetCmd (WCK ID to be controlled, 12, new ID, new ID).

For example, if you want to change the wCK ID with “107, it should be like the below.

SendSetCmd (1, 12, 10, 10)

43

Let’s include ID Set command in the control wCK LED source code. Last wCK ID was “1”.

Change the source code and check out the RBC and wCK movement.

e
ff Hain Function
A e e et e - - - e
vodd main(vedd) |
WORD i, LMSEC;
H'H_:i.:nil:- £h Ff Imitialize Hardware
SW_inie(); ff Initialize Variables
Fazm{"=zei");
TIMSK |= Ox0L: A/ Timer(Q Overflow Ini;irr'-mt activata
SpecialModal);
SendSerCmd(l, 12, 10, 10); /f Change wCK ID from "1’ to "10°
while({l){
’lf
1HMSEC = gHSEC;
ReadButtonil; £ Raad Button
IoTpdacel) ; Ff I0 Scatus UPDATE
while {lMSEC==gM5SEC) ;
*r
PosicienMove (1,.1,200);
Idwrice(l 0} ;
PWE_LEDZ_ON: delay ms(500);
PWR_LELZ_OFF; delay_ms {500} ;
PositionMove(l, 1, 50);
I0wrice(l, 3);
PER_LED1_ON: dalay ms{500);
FWR_LED1_OFF; delay msi500) ;
i
¥

Does wCK LED is blinking and moving left and right side?

It blinks only wCK LED, and user will know the reason.
Let's look at the code again. Do you understand “SendSetCmd(1, 12, 10, 10);” function?
Let's change with “SendSetCmd(1, ID_SET, 10, 10).” In previous source code, it is difficult to know

the meaning of “12” and “10") before you refer the communication protocol table.

Add “#define ID_SET 12" in “Main.h” file.

44

Jm i

J Hain Function

e

oid mainiveid) |

WORD i, IMSEC;
HW_initi}; A Inmitialize Hardware
SW_inin(}; ff Initialize Variables

Basmi“Fei®);

TIMEE |= O=01; Jf TimerQd Overflow INCErrupt ACTiVATE

SpecialMode() ;

Sdafine RIUM_LEDZ_OFF SET_BITE{FORTA)

Fdafine ERR_LED_ON CLP_EIT7{FORTA] £ BED
Edefine ERE_LED_OFF SET_EITT{FORTAI

fdsfine PWR_LEDL_ON CLE_BITZ{FORTC) £ GREE
Fdafine PWR_LELL OFF ZET_EITZ{PORTCH

Fdeiine FPWE_LEDZ_ON CLP_EITT{FORTC) £ BELF

gdatfine Bh:\:tlb::ﬂ"
Fdafine PED_ON

SET_DITTIFORTE)
ZET_EITE{PORTE)

et PED_OFF
SendSerCad(l, ID_SET, 10, 10}: // Change wCK ID from "1’ to "10° .:[

CLB_BITS{FORTE)

s f CHARCE_EWAELE SET_BIT4(PORTH)

while (1)
P
IM3EC = gMIEC:
ReadBucconi); ff Read Button
IoUpdace () : FF I0 Starus UFDATE
while{1MSEC==gMSEC)
=/
PogicionMova(l, L, 200}
Idwrite(l, 0);
PWR_LEDZ_ON;
FWR_LEDZ_OFF;

delay =f(500) 2
del ay_ms {500} ;

PosicionMowe(l, L, 0} ;
Idwrite(l, 3);
PWR_LEDL_ON;

FWR_LEDL OFF;

dll-‘y_ns (500);
delay ms{500);

Fdaring CHARGE_DISAELE CLP_BIT4{FORTE)

gdafine U_T_0F_POVER 3500
sdatine M T_OF_POVER 2600

fdutins L_T_OF_POVER glo0

Bdating MAY WwCE 31

e S ——
£ UART Communicaticn
/RSN EEEE SN S EEESNEES S EEEEEEEEE NS
Edeiine THO_BUF_SIZE 188 £ UARTO

fdsfine BMO_BUF_SIZE] # UARTO

Fdafine PXL BUF_SIZE a0 & UARTL

F L L T T T T T T T

i Zand Command

Bdwiine ID_BFET iz -|

In order to change the wCK ID with “1”, revise the code as the below.
wCK ID is changed from “10” to “1”.

| SendSetCmd(10, ID SET, 1, 1);]|

As shown in the above, parameters can be changed from source coding by user.

45

3.8 C Programming with Motion File

Change the motion file as a header file (*.h) format.
This is not for using RoboBuilder standard firmware, to use user-defined firmware to run motion file

directly.

¥ Requirements
® Robobuilder Robot : 1set
® RS-232 Serial Cable(PC Cable)
® RBC Firmware Upgrade Tool
® CodevisionAVR Compiler

Published RBC firmware data (Please see the Example project: 3-8 Motion Program)
1) Example Motion File
@ Project File : p_ex1.prj
(2 Motion File : m_ex1.rom
2) Example C source file (CodeVisionAVR version 1.24.8d)
@ Project File : cv_ex1.prj
(2 Unit File : main.c, comm.c, dio.c

(3 Header File : main.h, comm.h, dio.h, macro.h, m_ex1.h
NOTE)
MotionBuilder version : 1.10 beta or higher version.

CodeVisionAVR : 1.24.8d

Job Procedure

Create header file n " z
g g Register header file | Create firmmware Download

(= h) t=h} into C source (= hesx) firmware (= hesx)

MotionBuilder _ RBC Firmware
Upgrade Tool

Change into Header File (*.h)
1. Run MotionBuilder.
2. Click “Open” button, then load “p_ex1.prj” in motion_exam folder.
3. Click “Mation List” button.

46

= C:Wlronram FllesWROBOBUILDERWsoftwareWMotionBullderWProlectsWHUNDWp_ex1.prl

Scene_1

E

Scene_2
5cene 4
B

Scene_2

]

= 108
MFW -

o] 141

Hot Connected [16wCKs [CREATOR_HUNG m_ex Seane.0 Idx:0 TatslFrm: 106

4. Click “Creator Header File” after you select “ME_FMT#1" in Header File Format.

5.

-

L U ERE

[Nol Connected 15 wlks [CHEATOR_HUNO [mex] [Boene Mkl TotalFrin: 106

Input Header file name (*.h), then, click “Save” button.

“p_ex1.h”.

In the below example, file name is

DT | e ——
[Mutiun Editar Mation Hiadur Filie(=.h) =] HE

el

e _4
ke G

ke 2
tne_1

Moo

| -

L U ERE

[Nol Connected 15 wlks [CHEATOR_HUNO [mex] [Boene Mkl TotalFrin: 106

47

6. Itis asked whether you see the generated header file. If you click “Yes”, it shows header file
contents.

7. Header file is generated successfully.

Registering header file in C source code
1. Move 'p_ex1.h' file into “cv_exam\src” folder.
2. Load ‘cv_exl.prj’ in CodeVision.
3. Add below code in “comm.c” file.
#include "p_ex1.h"
4. Match the below array name with motion name. (Use big letter.)
For instance, motion name is “M_EX1",

gpT_Table =M_EX1_Torque;
gpE_Table =M_EX1_Port;
gpPg_Table =M_EX1_ RuntimePGain;
gpDg_Table =M_EX1_RuntimeDGain;
gplg_Table =M_EX1_RuntimelGain;
gpFN_Table =M_EX1_Frames;
gpRT_Table =M_EX1_TrTime;
gpPos_Table =M_EX1_Position;

Motion.NumOfScene =M _EX1 NUM_OF_SCENES;
Motion.NumOfwCK =M_EX1_NUM_OF_WCKS;

5. Header file registering finished.

Create firmware file (*.hex)

1. Click Project-Make menu in CodeVisionAVR, or press “Shift” + “F9” key.

2. firmware file (*.hex) will be generated.

Download firmware and Play RoboBuilder
1. Connect Power Adapter and PC Cable, then Power on RBC.
2. Run RBC Firmware Upgrade Tool and set proper COM Port.

48

EHBC Firmware Upgrade Tool =100 =]

~Connection

Com Fort Selection: JCom 1 |

Bzud Rate Selection: [115200 =]

Firmware File [[[0WE=am_v1,MWcy_examWsrcifhain, fiex

Click here and Pugh Reset Button |

Status: Idle |

Exit |

3. Click 'Click here and Push Reset Button'.
4. Press Reset button (It is located between PF1 and PF2 button), then it starts upgrade.

5. If finished, it shows 'Flash File successfully downloaded.' message box.

EHBC Firmware Upgrade Tool i] |
~Connection
Com Port Selaction: JCom 1 =
Baud Rate Selsction: |l 15200 j

Firmware File |7 Im RBC Firmware Upgrade |— i |

Flash File successfully downloaded,
Cancel

Status: Sending FLASH File - lines remaining 0 |

6. Disconnect RoboBuilder from PC, then press PF1 button to check out.

Generated motion header file has wCK torq, target position, frame no., etc. This information is saved

in C program header file as an array. C program use these data to control wCK.

49

Created p_ex1.h File Structure

flash I _EX1 Port [1LO][16] = { ¥
wCK_IDs[16]= { 13 /i Used wCK ID
IMotionZeroPos[16]= { % // Each wCK Zero Position value
Zdefine M_EX1_NUIM_OF SCENES 10 Jf Motion Scene Nos
Zdefine M_EX1_NUM_OF_\WCKS 16 /1 wEK Nos
M_EX1_RuntimeP Gan[16]= { ¥ // Each wCK Runtime P gain
IM_EX1_RuntimeDGam[lée]= { 3 /{ Each wCK Runtime P gain
IM_EX1_RuntimelGain[16]= { 13 // Each wCK Runtime P gain
IM_EX1_Frames[10]= { 13 // Each Scene Frame Nos
M_EX1_TrTime[10]= { 13 // Each Scene Run Time
IM_EX1_Position[11][16]= { 13 // wCK Each Scene Target Position
IVI_EX1_Torque[10][16]= { 13 /f wCK Eaca Scene Torque
IVI_EX1_Paort[10][16]= { 3 /f wCK Each Scene IO Port Control

¥ ‘M_EX1" is Motion Name

Generated header file data are assigned as the structure members. Data is divided Motion data and

Scene data. Based on these two data, frame data is needed to connect each Scene data.

And it send the “Position move” instruction to wCK.

Variable Structure

‘ Motion information |

‘ Each wCK motion info. ‘

I IMotion I[PlatForm |

RelativeIndex

AbsoluteIndex
NumOfScene

NumOfw K

Struct - wCK[Max_wCK]

_ | FileSize |

‘ Each Scene info. ‘

| Each wCK- Scene info.

I Scene |

Exist
RuntimePgain
RuntimeD gain
Runtimelgain
ForteEn

InitPos

I Index |

NumOfF rame

RunTime

Exist

StartPos

Struct - wCK[Max_wCK] |

enDFPos

Torq

ExPortD

In example source code, SampleMotion() function should be included in order to run motion

header file. SampleMotion() function load various data and run motion file.

change the motion file name variable properly if you would like to run other motion file.

50

Therefore, you can just

void SampleMotiont(void) — ;.'r'oid M_PlayFlash(void}

opT_Table T ErT)Torque: float tmp;
gpE_Table 3 M_Ex1]Port; WORD i
gpPg_Table 9 M_Ex1JRuntimePGain;))
gpDg_Table 9 w_Ex1lRuntimeD&ain: GetMotionFromFlash();
gplg_Table o W_EX1]RuntimelGain; sendT@ain();))
gpFN_Table 9 W_Ex1)Frames: for(i=0;i<Motion.Num0fScene;i++){
gpRT_Table A M_EX1)TrTime; g5Idx = 1; _
gpPos_Table 4 m_Ex1lrPosition: Ge:SceneFr:ﬂnFlasht):
on.NumOfScene = M_EX1INUM_OF_SCENES; SendExPortD();
ion, NumdfwCK M EXTINUM OF WCKS: CalcFramelIntervall);
W_PlayFlashii: } CalcUnitMove();

1 MakeFramel
SendFrame();
while (F_PLAYING);

Motion name 1

f—

Run leaded motion

If you look at the above source code, “M_PlayFlash()” function gets motion information and make and

send the frames to each wCK.

Let’s check out the below Flow_Chart how M_PlayFlash() function makes motion.

M_PlayFlash() function Flow-chart

I Read motion info. From Flash — GettotionFromFlash(; | } Read motion info. from Memory

I Runtime P,.0.I gain transmit to wCK — SendTGain(y; |

wCK Runtime Pgain, Dgain setup — SendSetCmdiID, 11, RPgain. RDgain); | Transmit motion info. to each wCK

wCK Runtime Igain setup— SendSetCmd(D, 24, RIgain, RIgain); |

| Read one Scene info. from Flash — GetScenefromFlash; | } Read Scene info. from Memory
+

| Transmit expansion port value — SendExPortD () I

— Expansion port control (LED)
| wCK Port setup — SendSetCmd{dD, 100, ExPortDy, ExPortD); |

L 2
| Frame transmission calculate — CalcFrameInterval(); I 7
¥
| Cal dUnitiMove(; | = Frame info. calculate / generate
¥
Ready to transmit one frame — Makerrainey,
. _J

Transmit one frame — SendFrame(;
= Sync wCK movement

Sync Position Command — SyncPosSend():
¥ -
F_PLAYING finish idle Use Timerl interrupt and Transmit frame info. L Transmit frame to all wCK

< One Scene Play finish
Run scene nos = Runall Scene 2> Motion Play finish

M_PlayFlash function is running until motion is finished.
GetMotionFromFlash(), GetSceneFromFlash(), CalcFramelnterval(), SyncPosSend() functions are

included in “Comm.c”.

If you don't use wCK LED function, you can remove “SendExPortD()” function.

Advanced algorithm walking or sensor function can be included in this source code.

So you can build much smarter robot as you do C programming.

51

3.9 IR Remote Controller with C Programming

% Requirements
® Robobuilder Robot : 1set

IR remote controller : 1EA

® RS-232 Serial Cable(PC Cable)
® RBC Firmware Upgrade Tool
® CodevisionAVR Compiler

If you look at the below pictures, it shows IR remote controller pulse signal that divide ‘0’ and ‘1’. BIT ‘0’
and BIT ‘1’ is different in terms of signal length. BIT ‘0’ signal is 1 ms, while BIT ‘1’ signal length is 1.5ms.
If you look at the below SINGLE-WORD FORMAT, IR remote controller sends 5ms Header Pulse at first

time, then it sends transmission code.

BIT “0" (msec)

0.5
[T [TI1T1

1.0

BIT ‘1" (msee)

0.5

[1111 [

1.5

SINGLE-WORD FORMAT (msec)

HEADER PULSE CUSTOM CODE DATA
c3

0 0
[TTI]TT IR RN NN RN NRRRRRRARRARRRRARRARRAN .

3.0 2.0

Header Pulse is ready signal to send “CUSTOM CODE". Real transmission code is “Custom Code”,
and “Data Code”. Therefore, header pulse and data should be distinguished. The best way is to use
signal length. If 1~1.5ms signal is in, it is data. If 5 ms signal is in, it is header pulse. In order to know
the signal length, check the signal rise and signal fall. This is hardware dependence function. This code

is included in published program source. Let's check out the below source code to understand clearly.

52

1/
/I Remote Controller IR Receiver Interrupt
1/
interrupt [EXT_INT6] void ext_int6_isr(void) {

BYTE width; /I Signal Length

WORD i; /I Temporary Variable

width = TCNT2; /I Save Signal Length

TCNT2 =0; /I Initialize Register (Measure signal length)
if(gIrBitindex == OXFF){ /I 'When signal input is idle status

/I Check whether input signal is 5ms length (header pulse)
if(width >= IR_HEADER_LT) && (width <= IR_HEADER_UT)){

F_IR_RECEIVED = 0; /I Receive finish flag inactivate = Receiving idle status
glrBitindex = 0; /I Initialize data code number variable
for(i =0; i < IR_BUFFER_SIZE; i++) I/l Initialize data buffer
glrBuffi] = 0;
}
}
elsef /I When data code is in the middle of receiving

I/l Check whether the received data code ‘0’ is 1ms. If ‘0’, receiving code numbers are increased.
if((width >= IR_LOW_BIT_LT)&&(width <= IR_LOW_BIT_UT)) glrBitindex++;

/I Check whether the received data code ‘1’ length is 1.5ms
else if((width >= IR_HIGH_BIT_LT)&&(width <= IR_HIGH_BIT_UT)¥

/I Input received ‘1’ bit position in order
if(girBitindex !=0) gIrBuf[(BYTE)(gIrBitindex/8)] |= 0x01<<(glrBitiIndex%8);
else glrBuf[0] = 0x01;
girBitiIndex++; I/l Increase the received data code number
}
/I When the received code is NOT ‘0’, or ‘1, either.
else glrBitindex = OxFF;

if(gIrBitindex == (IR_BUFFER_SIZE * 8)){ /[If input code is filled in buffer
F_IR_RECEIVED = 1; /I Receive finish flag setup => Receiving finish
glrBitindex = OxFF; /I Input idle status setup

}

As shown in the above, IR remote controller has own signal status and method. Therefore, you need to

check IR remote controller method in advance. Received data has 4 Byte information as the below.

Bytel + Byte2 + Byte3(remote controller own custom code) + Byte4d(data code)

This received 2 data and information are forwarded through “ProcIR()” function.

53

Il

/I Process IR receiving

Il

void Proclr(void)
{
WORD i; /I Temporary variable
if(F_DOWNLOAD) return; /I When program download, IR receiving is NOT available.
If ‘C’ button, ‘# button, NON-Standard platform, IR receiving is NOT available
if(F_FIRST_M && glIrBuf[3]!=BTN_C && glrBuf[3]!=BTN_SHARP_A && F_PF!=PF2) return;
if(F_IR_RECEIVED){ Il IR receiving flag activated =» 4 Byte received
EIMSK &= OxBF; /I No IR receiving
F_IR_RECEIVED =0; /I IR receiving flat inactivate

/I Check whether remote controller is registered in RBC = Custom code check
if((glrBuf[0]==eRCodeH[0] && glrBuf[1]==eRCodeM[0] && glrBuf[2]==eRCodeL[0])
||(gIrBuf[0]==eRCodeH[1] && gIrBuf[1]==eRCodeM[1] && glrBuf[2]==eRCodeL[1])
||(glrBuf[0]==eRCodeH[2] && glrBuf[1]==eRCodeM[2] && glrBuf[2]==eRCodeL[2])
||(gIrBuf[0]==eRCodeH[3] && gIrBuf[1]==eRCodeM[3] && glrBuf[2]==eRCodeL[3])
||(gIrBuf[0]==eRCodeH[4] && glrBuf[1]==eRCodeM[4] && gIrBuf[2]==eRCodeL[4])}{
switch(glrBuf[3]){ /I Check received data code
case BTN_A: /I When received data code is BTN_A.
M_Play(BTN_A); /I Run BTN_A motion
break;
case BTN_B: /I When received data code is BTN_B.
M_Play(BTN_B); /I Run BTN_B motion

break;

}
for(i=0;i<IR_BUFFER_SIZE;i++) gIrBuf[i]=0; /I IR receiving initialize

EIMSK |= 0x40; /I Permit IR receiving

}
¥ BTN_A, BTN _B, BTN_C command values are defined in “Main.h”.

If you make own function and source code instead of “M_Play()” function, you can play other
program with IR remote controller.

54

3.10 Humanoid Robot Maze Escape

Let's make the maze escape program to use HUNO PSD sensor.

¥ Requirements
® RoboBuilder (Huno)
® RoboBuilder IR Remote Controller
® RS-232 Serial Cable(PC Cable)
® RBC Firmware Upgrade Tool

Let’s check out PSD sensor principle and usage.

" PSD Sensor Principle PSD Sensor Usage

35

TWhite paper (Reflectasce rame $a) "
I Distance * Voltage = approx 21.'3

3N - mmme Gy pape (Refecumes nitio 15%)

L:A =F:X |
cel | lll\ | | —aflstance = 27.5 / Voltage
LX = AF) Il ‘|‘~ |
X—AF[L?:" I\
h 2 15_5'_ : AD{ = (Voltage / 5) * 1024
i | P o
soutput = & 1~ AN - Yoltage = (5 * ADC) / 1024
Certain Constant || “'--H_/
7/ Distance 05— 7/ e
Ual_ 00w W% © M 8
Dhstance fo reflectivdobyect Licm) Distance (cm)
=75/ * ADC) J 1024}

PSD is the sensor that reflected light angle is changed in accordance with distance. Let's look at the
above left figure. If the object become more distant, ‘L’ value is increased while ‘A’ value is decreased.

And ‘X’ value is also decreased. For this reason, output value is changing.

The above graph is the relationship between actual distance and PSD sensor voltage. In order to

measure the distance, the formula is ;

| Distance = 27.5 / ((5*ADresultvalue) / 1024) |

This has included a little tolerance. But this is to judge the object detection, not a

distance measure. Therefore, you can use from 15cm to 45cm distance without problem.

55

Let's check out the distance measurement program using PSD sensor and ATmegal28
ADC(Analog Digital Converter),

Il
/I Read Distance from PSD /“Adc.c”
Il
void Get_AD_PSD(void)

{
float tmp =0; /l variable for distance calculation
float dist; /[l variable for distance calculation
EIMSK &= OxBF; /I outer interrupt no.6 inactivate (IR receiving inactivate)
PSD_ON; // PSD ON
delay_ms(50); /I ldle status until PSD Power On
gAD_Ch_Index = PSD_CH,; /Il ADC PSD channel selection
F_AD_CONVERTING =1; /I AD convert finish flag set
ADC_set(ADC_MODE_SINGLE); /l select AD mode
while(F_AD_CONVERTING); /I AD convert finish flag clear
tmp =tmp + gPSD_val; /I save AD convert result
PSD_OFF; /I PSD Power Off
EIMSK |= 0x40; Il IR receiving reactivate
dist = 1117.2 / (tmp - 6.89); // PSD value calculate =» calculation by experiment
/ldist = 27.5/ (5.0*(float)(gAD_val&0x03ff)/1024.0); // =» PSD calculation formula
if(dist < 0) dist = 50; /Il check distance limit
else if(dist < 10) dist = 10;
else if(dist > 50) dist = 50;
gDistance = (BYTE)dist; I/l save the result into gDistance
}

I
/I AID convert finish interrupt / “Main.c”
I

interrupt [ADC_INT] void adc_isr(void) { /l Run interrupt when AD convert is finished.
WORD i; /l Temp. variable
gAD_val = (signed char)ADCH,; /I Save 10bit AD convert result
switch(gAD_Ch_Index){ // Select channel
case PSD_CH : /I PSD channel
gPSD_val = (BYTE) gAD_val; /I Save into PSD variable
break;
case VOLTAGE_CH : /I Battery voltage check channel

i =(BYTE) gAD_val;
gVOLTAGE = | * 57,
break;

56

case MIC_CH : /l Mic. Input channel
if(BYTE)gAD_val < 230)
gMIC_val = (BYTE)gAD_val;
else gMIC_val = 0;
break;

}
F_AD_CONVERTING = 0; /I AD convert flag clear)

As | Get_AD_PSD() | function is called, measured distance value is saved in variable.

In order to escape the maze, use humanoid basic motion “move forward”, “move back ward”,

“turn left”, “turn right” in “HunoBasic.h” file. Below is the method to escape the maze.

Example)

7 7 F7 7 1 2

If there is no wall, move forward.
If the wall is detected, check left side. = Turn @
If front and left side wall are detected, check right side. = Turn @

A wnN P

If front, left and right side walls detected, go to opposite way. = Turn @

In order to do this, robot should turn 90 degree. 90 degree turning is possible if HUNO's turn left or and
turn right 3 times continuously in flat floor. In the above example, D robot turns left 90 degree (turn left
3 times), @ 180 degree turn left (turn left 6 times) 3 90 degree turn right (turn right 3 times), and move

forward motion are needed.

Let's find out how HUNO motions are conducted through which functions.
Below is the part of “M_Play (BYTE BtnCode)” function in “Comm.c”.

57

void M_Play(BYTE BtnCode)

{

/I D Check whether remote controller BTN_C is pressed, and run BasicPose

if(BtnCode == BTN_C){

BasicPose(F_PF, 50, 1000, 4);

}
if(F_PF == K /I @ Check platform (Huno, Dino, Dogy)
switch(BtnCode){ /I @ Depends on the pressed button code
case BTN_A:
SendToSoundIC(7);
gpT_Table= HUNOBASIC_GETUPFRONT_Torque;
gpE_Table= HUNOBASIC_GETUPFRONT_Port;
gpPg_Table = HUNOBASIC_GETUPFRONT_RuntimePGain;
gpDg_Table = HUNOBASIC_GETUPFRONT_RuntimeDGain;
gplg_Table = HUNOBASIC_GETUPFRONT_RuntimelGain;
gpFN_Table = HUNOBASIC_GETUPFRONT_Frames;
gpRT_Table = HUNOBASIC_GETUPFRONT_TrTime;
gpPos_Table = HUNOBASIC_GETUPFRONT_Position;
Motion.NumOfScene = HUNOBASIC_GETUPFRONT_NUM_OF_SCENES;
Motion.NumOfwCK = HUNOBASIC_GETUPFRONT_NUM_OF_WCKS;
break;
case BTN_B:
default: return;
}
}
else if(F_PF ==) /I @ Check Platform (Huno, Dino, Dogy)
switch(BtnCode){ /I @ Depend on the pressed button code
case BTN_A:
default: return;
}
}
else if(F_PF ==)i /I @ Check Platform (Huno, Dino, Dogy)
switch(BtnCode){ // @ Depend on the pressed button code
case BTN_A:
default: return;
}
}
else if(F_PF ==) /I If platform is non-standard platform, return
return;
}

Motion.PF = F_PF;
M_PlayFlash();

58

You can see that HUNO run motions are different in accordance with conditions.

case BTN_LR: HUNOBASIC_TURNLEFT_xxx
case BTN_U : HUNOBASIC_WALKFORWARD_Xxxx
case BTN_RR: HUNOBASIC_TURNRIGHT_xxx

case BTN_.D : HUNOBASIC_WALKBACKWARD_xxX

For move forward, | M_Play(BTN_U) | function is called.

For turn left,[M_Play(BTN LR) | function is called.

For turn right, | M_Play(BTN_RR) | is called.

For move backward, | M_Play(BTN_D) | is called.

Only different point is the using the sensor and algorithm instead of IR remote controller.

Let's see the C program that robot escapes the maze.

void { /1 90 degree left turn
M_Play(BTN_LR); M_Play(BTN_LR); M_Play(BTN_LR); /l'left turn 3 times

}

void /1 180 degree left turn
M_Play(BTN_LR); M_Play(BTN_LR); M_Play(BTN_LR); /l'left turn 5 times
M_Play(BTN_LR); M_Play(BTN_LR);

}

void // 90 degree right turn
M_Play(BTN_RR); M_Play(BTN_RR); M_Play(BTN_RR); M_Play(BTN_RR); /I right turn 4 times

}

void Robot_Forward(void){ /l Move forward
M_Play(BTN_U); M_Play(BTN_U); M_Play(BTN_RR); /I Move forward 2 times + right turn once

}

void Robot_Backward(void){ /I Move backward
M_Play(BTN_D); /I Move backward once

}

void User_Func_1(void){ I Maze escape function
while(1){ /I Run continuously

Get_AD_PSD(); /I Check front distance (1)
if(gDistance <= 12) Robot_Backward(); /I lf too close, Move backward

59

else if(gDistance <= 30){ /['If there is wall, 90 degree turn left

Get_AD_PSD(); /I Check left side distance (2)
if((gDistance <= 30)){ /l'If there is wall, 180 degree turn left
Get_AD_PSD(); /I Check right side distance (3)
if((gDistance <= 30)) Il'If there is wall, 90 degree turn right
}
}
else Robot_Forward(); /I lf there is no wall, move forward

}

¥ Turn right or left run times could be different depends on the floor status.

In order to use the above program,

1. Include the above code in “main()” function in “Main.c”.

2. Open “DIO.c” file. Add user function in “case BTN_1" line.

(In basic posture, “User_Func_1()" function runs if you press IR remote controller “1” button.)

lcase BTN 1 : User Func_1(); |

3. Press | Shift + F9 | button to compile it and download “hex” file into RBC box.

4. Press “1” button to run the user program after robot basic posture.

60

4. C Program Summary

4.1 Variables

A variable is just a named area of storage that can hold a single value (numeric or character). The C
language demands that you declare the name of each variable that you are going to use and its type, or
class, before you actually try to do anything with it. Variable value initially ‘0’.

Name Description Size* Range*

) signed: -128 to 127
char Character or small integer. 1lbyte

unsigned: 0 to 255

signed: -32768 to 32767

short int (short) Short Integer. 2bytes)
unsigned: 0 to 65535
. signed: -2147483648 to 2147483647
int Integer. 4bytes)
unsigned: 0 to 4294967295
]) signed: -2147483648 to 2147483647
long int (long) Long integer. 4bytes

unsigned: 0 to 4294967295

Boolean value. It can take one of two values:

bool 1lbyte true or false
true or false.

float Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits)
double Double precision floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits)
long double Long double precision floating point number. (8bytes +/- 1.7e +/- 308 (~15 digits)
Ex) int VariableNumber1; /I int type variable
int VariableNumber2 = 0; /I int type variable value ‘0’
char VariableNumbers3; /I char type variable
unsigned char VariableNumber4 = 255; /I char type variable value ‘255’

The Programming language C has two main variable types

Local Variables

Local variables scope is confined within the block or function where it is defined. Local variables must
always be defined at the top of a block. When a local variable is defined - it is not initialize by the system,
you must initialize it yourself. When execution of the block starts the variable is available, and when the
block ends the variable 'dies'".

Global Variables

Global variable is defined at the top of the program file and it can be visible and modified by any function
that may reference it. Global variables are initialized automatically by the system when you define them!

If same variable name is being used for global and local variable then local variable takes preference in

its scope. But it is not a good practice to use global variables and local variables with the same name.

61

4.2 Operators

Assignment (=)

The assignment operator assigns a value to a variable.
a=>5;
This statement assigns the integer value 5 to the variable a. The part at the left of the assignment
operator (=) is known as the Ivalue (left value) and the right one as the rvalue (right value). The Ivalue
has to be a variable whereas the rvalue can be either a constant, a variable, the result of an operation or
any combination of these.
The most important rule when assigning is the right-to-left rule: The assignment operation always takes
place from right to left, and never the other way:
a=b;
This statement assigns to variable a (the Ivalue) the value contained in variable b (the rvalue). The value
that was stored until this moment in a is not considered at all in this operation, and in fact that value is
lost.
Consider also that we are only assigning the value of b to a at the moment of the assignment operation.
Therefore a later change of b will not affect the new value of a.

Arithmetic operators (+, -, *,/, %)
The five arithmetical operations supported
Operations of addition, subtraction, multiplication and division literally correspond with their respective
mathematical operators. The only one that you might not be so used to see is modulo; whose operator is
the percentage sign (%). Modulo is the operation that gives the remainder of a division of two values.
For example, if we write:

a=11%3;

the variable a will contain the value 2, since 2 is the remainder from dividing 11 between 3.

62

Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=, =, |=)

When we want to modify the value of a variable by performing an operation on the value currently stored

in that variable we can use compound assignment operators:

expression is equivalent to

value += increase;|value = value + increase;

a-=>5; a=a-5;
al=b; a=alb;

price *= units + 1; |price = price * (units + 1);

Relational and equality operators (==, !=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use the relational and equality operators.
The result of a relational operation is a Boolean value that can only be true or false, according to its Boolean
result.

We may want to compare two expressions, for example, to know if they are equal or if one is greater than the
other is. Here is a list of the relational and equality operators that can be used in C++:

==|Equal to

I= [Not equal to

> |Greater than

< |Less than

\
11

Greater than or equal to

N
1

Less than or equal to

Logical operators (!, &&, ||)

The operator! is the operator to perform the Boolean operation NOT, it has only one operand, located at its
right, and the only thing that it does is to inverse the value of it, producing false if its operand is true and true

if its operand is false. Basically, it returns the opposite Boolean value of evaluating its operand. For example:

I(6==5) /I evaluates to false because the expression at its right (5 == 5) is true.
1(6 <=4) /I evaluates to true because (6 <= 4) would be false.
Itrue /I evaluates to false

Ifalse /I evaluates to true.
The logical operators && and || are used when evaluating two expressions to obtain a single relational result.

The operator && corresponds with Boolean logical operation AND. This operation results true if both its two

operands are true, and false otherwise.

63

Bitwise Operators (&, |, *, ~, <<, >>)

Bitwise operators modify variables considering the bit patterns that represent the values they store.

operator equivalent description
& AND Bitwise AND
[OR Bitwise Inclusive OR
N XOR Bitwise Exclusive OR
~ NOT Unary complement (bit inversion)
<< SHL Shift Left
>> SHR Shift Right

4.3 Control Statement

The if else Statement
This is used to decide whether to do something at a special point, or to decide between two courses of

action. The following test decides whether a student has passed an exam with a pass mark of 45

if (result >= 45)
printf("Pass\n");
else
printf("Fail\n");

Each version consists of a test, (this is the bracketed statement following the if). If the test is true then
the next statement is obeyed. If is is false then the statement following the else is obeyed if present.
After this, the rest of the program continues as normal. If we wish to have more than one statement
following the if or the else, they should be grouped together between curly brackets. Such a grouping is

called a compound statement or a block.

if (result >= 45)
{ printf("Passed\n");

printf("Congratulations\n")

}
else
{ printf("Failed\n");
printf("Good luck in the resits\n");
}

64

The for Loop

The for loop works well where the number of iterations of the loop is known before the loop is entered. The

head of the loop consists of three parts separated by semicolons.

The example is a function which calculates the average of the numbers stored in an array. The function takes

the array and the number of elements as arguments.

float average(float array[], int count)
{ float total = 0.0;
int i

for(i = 0; i < count; i++)

total += arrayl[i];

return(total / count);

}

The for loop ensures that the correct number of array elements are added up before calculating the average.

The while Loop

The while loop repeats a statement until the test at the top proves false.
As an example, here is a function to return the length of a string.

int string_length(char string[])
{ inti=0;

while (string[i] !="0")
i++;
return(i);

}

The string is passed to the function as an argument. The size of the array is not specified, the function will

work for a string of any size. The while loop is used to look at the characters in the string one at a time until

the null character is found. Then the loop is exited and the index of the null is returned. While the character

isn't null, the index is incremented and the test is repeated.

65

4.4 Functions

A C function definition consists of return value (void if no value is returned), a unique name, a list of
parameters in parentheses (void if there are none), and various statements. A function with non-void return

type should include at least one return statement:

<return-type> functionName(<parameter-list>)

{

<statements>

return <expression of type return-type>;

where <parameter-list> of n variables is declared as data type and variable name separated by a comma:

<data-type> varl, <data-type> var2, ... <data-type> varN

The following program shows use of a function pointer for selecting between addition and subtraction:

#include <stdio.h>

int add(int x, inty)

{
return X +;
}
int subtract(int x, int y)
{
return x - y;
}
int main(int argc, char* argsl])
{
int foo =1, bar =1,
printf("%d + %d = %d\n", foo, bar, add(foo, bar));
printf("%d - %d = %d\n", foo, bar, subtract(foo, bar));
return O;
}

66

4.5 Arrays and Pointers

To fully understand the workings of C you must know that pointers and arrays are related.

An array is actually a pointer to the Oth element of the array. Dereferencing the array name will give the Oth

element. This gives us a range of equivalent notations for array access.

| Array Access Pointer Equivalent |
arr [0] #ATT
Aarr [2] *{HI].' + 2)
AarT []:[] *{HI].' + Il)

There are some differences between arrays and pointers. The array is treated as a constant in the function
where it is declared. This means that we can modify the values in the array, but not the array itself, so

statements like arr ++ are illegal, but arr[n] ++ is legal.

Since an array is like a pointer, we can pass an array to a function, and modify elements of that array without
having to worry about referencing and de-referencing. Since the array is implemented as a hidden pointer, all

the difficult stuff gets done automatically.
A function which expects to be passed an array can declare that parameter in one of two ways.
int arr[]; or int #arr;

Either of these definitions is independent of the size of the array being passed. This is met most frequently in
the case of character strings, which are implemented as an array of type char. This could be declared as
char string[]; but is most frequently written as char *string; In the same way, the argument vector argv is an

array of strings which can be supplied to function main. It can be declared as one of the following.

char *%argv; or char *argv[];

67

4.6 Structure

A structure type is usually defined near to the start of a file using a typedef statement. typedef defines
and names a new type, allowing its use throughout the program. typedefs usually occur just after the
#define and #include statements in a file.

Here is an example structure definition.

typedef struct {
char name[64];
char course[128];
int age;
int year;

} student;

This defines a new type student variables of type student can be declared as follows.

student st_rec;

Notice how similar this is to declaring an int or float.

The variable name is st_rec, it has members called name, course, age and year.

Each member of a structure can be used just like a normal variable, but its name will be a bit longer. To
return to the examples above, member name of structure st_rec will behave just like a normal array of

char, however we refer to it by the name

st_rec.name

Here the dot is an operator which selects a member from a structure.

Where we have a pointer to a structure we could dereference the pointer and then use dot as a member
selector. This method is a little clumsy to type. Since selecting a member from a structure pointer
happens frequently, it has its own operator -> which acts as follows. Assume that st_ptr is a pointer to a

structure of type student We would refer to the name member as
st_ptr -> name
As we have seen, a structure is a good way of storing related data together. It is also a good way of

representing certain types of information. Complex numbers in mathematics inhabit a two dimensional

plane (stretching in real and imaginary directions). These could easily be represented here by

68

typedef struct {
double real;
double imag;

} complex;

doubles have been used for each field because their range is greater than floats and because the

majority of mathematical library functions deal with doubles by default.

In a similar way, structures could be used to hold the locations of points in multi-dimensional space.

Mathematicians and engineers might see a storage efficient implementation for sparse arrays here.

Apart from holding data, structures can be used as members of other structures. Arrays of structures are

possible, and are a good way of storing lists of data with regular fields, such as databases.
Another possibility is a structure whose fields include pointers to its own type. These can be used to

build chains (programmers call these linked lists), trees or other connected structures. These are rather

daunting to the new programmer, so we won't deal with them here.

69

wCK Communication Protocol

Appendix A.

Command Packet Response Packet
Command byte B byte 2
byte 1 TP : BETIE byte i] 4lalpiii
. header target positio
Position Move \~254 0~264
Syncronized Position| X lastiD+1 100 target 101 target 102 target 103 target D5 targel |06 target |astiD-1 fargel check sum
Move 1~31 0~254 ciﬁ .‘.T.nlw.« nlﬁ a!ﬁ (~254 Oa.mllm.n _E
Status Read modd |2] X check sum curent position
abit i 5 | o~a0 0~254 0~254
Command A D maode posiiion
Passive wCK 1 X byte3 0254
0~30 [a-CCw speed (note1} Rotation position
Wheel wCK 6 a=cw| 018 Count
Break wCK 31 2 X ID
] mode I check sum new
Baudrate Set a = byted Batiirale
g new D gain new
P.D gain Set g O~p54 P gain
P.D gain Read 10 X = byted P gain
Runtime P,D gein Sef 1 .__ulnuum__. mulmrm___h P gain
D Set 12 .w_mmwm = byted new ID new D
SPEED Set 12 soead sae new Speed | new Accel
SPEED Read 14 X = byted Speed Accel
Config. . new new
Comnand Over Load Set 0xFF 15 = byted avercur T overcur T
Over Load Read 16 X = byted (note3) overcur T overcur T
new L bound new new
e L 0~254 | U bound L bound
Boundary Read 7 lo~a0 18 X = byted U bound L bound
- i new new
| gain Set 21 = byled o {Cain
| gain Read 22 = byted | gain | gain
. accel
Runtime Speed Set 23 030 50100
gail | gai
Runtime | gain Set 24 =0 o P gain D gain
110 Wite 100 X _.c._z = byted Output Value | Output Value
St 1/0 Read 101 X = byted Output Value
Command 7 . Motion Count] Motion Cmnd 1] Motion DATA 1| Motion Cmd 2] Motion DATA Y Motion Cmd 3] Motion DATA 3 check sum Motion Count
Mot DATA W =0 0-8 0254 0254 0254 0~254 o254 0~25¢ {notes)
-] check sum
Motion DATA Read 151 X = byted [noted)
P 1D Torg targei(H3) target(L7)
7 Position Move i 200 (~253 ~254 0~1023
Command e D check sum
Position Read 20 G~253 = byted (notes) _|

X :don't care

notel :
note? :

noted
noted
note5
note6
note?

: CheckSum = (
: CheckSum = (byle2XOR byte2 XOR byted XOR byle5 XOR byle6) AND Ox7F

(by1e2XOR byted) AND Ox7F

AXOR -~ (byte{lastD+3)AND 0x7F
: CheckSum = (byle2XOR byte? XOR byted XOR byle5) AND 0x7F
: CheckSum = (byle2XOR byted XOR byted) AND Ox7F
: CheckSum = (byle2X0R byte3 XOR -+ bytell) AND Ox7F

12 1XOR byle? XOR = bytel) AND 0x7F

Motion DATA commands : Selft-running motion mode is activated only when the No. of Instruction is more than 0.

70

