

Understanding wCK module and C programming with RoboBuilder

RoboBuilder Co., Ltd.

1. Overview	
1.1 Introduction	3
1.2 Structure	4
1.3 Requirement	5
2. Understanding wCK	6
2.1 Change wCK ID	6
2.2 Change various wCK Parameters	9
2.3 PID Gain Tuning and wCK Response Feature	10
2.4 wCK Free Motion Programming	17
3. RBC Firmware Study for User Created Robot	
3.1 Firmware and C Program	
3.2 RBC Hardware Structure and I/O MAP	
3.3 C Programming with Motion File	
3.4 RBC LED Control – Understanding RBC I/O	
3.5 Control wCK Position – 8 Bit Command Communication	
3.6 Control wCK LED	
3.7 Configure wCK Parameters - Configure Command and Read Data	42
3.8 C Programming with Motion File	46
3.9 IR Remote Controller with C Programming	52
3.10 Humanoid Robot Maze Escape	55
4. C Program Summary	61
4.1 Variables	
4.2 Operators	
4.3 Control Statement	
4.4 Functions	
4.4 Functions	
4.6 Structure	
4.0 STUCIULE	
Appendix A. wCK Communication Protocol	70

- TITLE –

1. Overview

1.1 Introduction

This tutorial is for intermediate-advanced RoboBuilder user, who is already accustomed with MotionBuilder, ActionBuilder GUI based programming, and for controlling the individual wCK module of robot directly by C language programming.

First of all, user needs to understand wCK module (hereinafter, "wCK") properly. wCK is not a just a part of Robot, but also, it has various useful functions itself. More robot project can be done as user uses these wCK featured functions.

If, user understood wCK fully, let's start the C programming with RoboBuilder. By realizing all wCK functions with C programming, user learns C programming as well. User learns from link up with MotionBuilder (*.rbm) file to humanoid robot maze escape and IR communication programming in this book.

Lastly, basic C programming grammar and simple methods are introduced in this book in order to help to C programming beginners.

1.2 Structure

Chapter 2.1. Change wCK ID

It describes how to change wCK ID parameter configuration.

Chapter 2.2. Change various wCK parameters

It describes how to configure ID, Baud Rate, Over Load, Speed, etc parameters.

Chapter 2.3. Set PID Gain and Check wCK response time

It describes PID control theory and how to adjust PID value in accordance with PID gains.

Chapter 2.4. wCK free motion programming

It describes how to do the wCK direct programming without controller.

Chapter 3.1. Firmware and C programming

It describes general firmware's definition and C programming structure for firmware.

Chapter 3.2. RBC hardware and I/O MAP

It describes RBC hardware structure and I/O MAP

Chapter 3.3. C Programming with Motion file

It describes provided C programming project file structure.

Chapter 3.4. Control RBC LED (Project 3-4 RBC_LED)

It describes how to control RBC LED.

Chapter 3.5. Control wCK Position (Project 3-5 wCK Position)

It describes how to control wCK position for Robot motion.

Chapter 3.6. Control wCK LED (Project 3-6 wCK_LED)

It describes how to control wCK LED and Command packet communication.

Chapter 3.7. Configuration of wCK parameter (Project 3-7 wCK_Parameter)

It describes how to configure wCK parameter with C programming.

Chapter 3.8. Make C program with Motion file (Project 3-8 Motion_Program)

It describes how to include motion file into C program.

Chapter 3.9. Using IR controller and Understanding C program (Project 3-9 IR_RemoteCon) It describes IR remote controller principles and how to change the configuration.

Chapter 3.10. Humanoid Robot Maze Escape Programming (Project 3-10 Maze)

It describes how to program maze escape programming for humanoid robot by using RoboBuilder distance sensor.

Chapter 4. C Programing Summary

It describes basic C programming grammar for beginner.

1.3 Requirement

- RoboBuilder Kit (5710K or 5720T model)
- CodeVision-AVR C compiler

CodeVision C compiler can be purchased from <u>www.yklogic.co.kr</u> or <u>www.hpinfotech.ro</u>. Free released version for students is not enough to support the examples in this book.

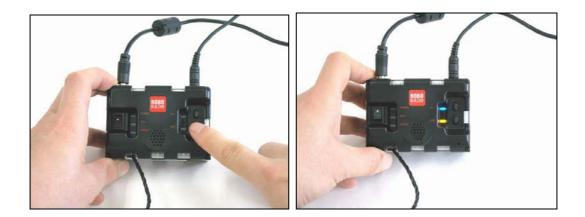
2. Understanding wCK

2.1 Change wCK ID

In RoboBuilder kit, wCK is set own ID from 0 to 15.

If necessary, user can change ID No. from 0 to 30 as user want to change.

※ Requirements


- RBC (Control Box) : 1 EA
- wCK : 1 EA
- wCK Cable : 1 EA
- RS-232 Serial Cable (PC cable) : 1 EA
- Window XP based PC and wCK Programmer software

Let's change wCK ID 2 to ID 0. Connect wCK, RBC, PC cable and Power adapter as the below.

X User can connect any of connector in RBC box. But only one wCK should be connected.

Press PF2 button then, power on RBC box. Then RBC Box goes into PC control mode. PF1 LED (Blue), PF2 LED (Orange) is ON together. (In wCK Programmer ver 1.34 or higher, this procedure is not needed.)

Click "Basic Setting" tap in wCK Programmer.

😝 wCK Programer v1.32			
ComPort Check	BasicSetting SpecialSetting Act	Setting & Programming ionCon GraphYiew MotionProgra	ming ROBO
Baud Rate 115200	Scan ID NonID 💌	Scan Baudrate NonBaud	Scan Gain NonGair NonGair
Command Pad Target ID Set 0	Scan ID	Scan Baud	Scan Gain
8bit Command Type Move Torq 0 10 bit Move Move Torq 0 WheelSpdLevel 0	Set ID NonID Set ID	Set Bauchate NonBaud Set Baud All wCK	Set Gain NonC NonC NonC NonC NonC NonC NonC
Ext 1/0 0	Scan Speed Non Non	Scan OverLoad NonOverLoad	Scan Boundary NonUB NonLB
Command Execute	Scan Speed	Scan OverLoad	Scan Boundary Upper Lower Set Boundary NonU V NonLE V
0 254 Control Angle	Set Speed All wCk	Set OverLoad All wCk	Set Boundary All wCK
, <u> </u>			4
	Return	Value	

After connected with PC COM port, click "Scan Baud", then wCK Baud Rate is shown as the below.

😴 wCK Programer v1.32			
ComPort Check	BasicSetting SpecialSetting Act	Setting & Programming ionCon GraphView MotionProgra	ming ROBO
Baud Rate 115200 Check Pot Command Pad Target ID Set 0 Solution Bobit Command Type Move Torg 0	Scan ID NorlD Scat ID Set ID NorlD V	Scan Baudrate 115200	Scan Gain NonGair NonGair NonGair Scan Gain RuntimeChk Pgain Dgain Igain
T0 bit Move Move Torq 0 ▼ WheelSpdLevel	Set ID	Set Baud All wCK	Set Gain NonG V NonG V NonG V
Ext I/D 0 Target Position 127 Command Execute 127 0 0 0 0 0 0 0 0 0 0 0 0 0	Scan Speed Non Scan Speed Non RuntimeChk Speed Accel Set Speed Set Speed All #CX	Scan OverLoad NonOverLoad Scan OverLoad Set OverLoad NonOverLos - Set OverLoad All #CR	Scan Boundary NortLB NortLB Scan Boundary Upper Set Boundary NortL Set Boundary All #CK
00,5E,	Deter	Veloc	<u>~</u>
	Return	i Value	

× If "Try Again" message is shown, please check the wCK cable and PC cable connection.

If Scan ID button is clicked, it shows the present wCK ID as shown in the below.

😴 wCK Programer v1.32			
ComPort Check	BasicSetting SpecialSetting Act	Setting & Programming ionCon GraphView MotionProgra	aming BOBO
Baud Rate 115200 Check Post Command Pad Target ID Set 2 V Bibt Command Type Move Torq 0 T 10 bit Move Torq 0 VheelSpdLevel 0 V	Scan ID Control Contro	Scan Baudrate 115200 Scan Baud Set Baudrate NorBaud Set Baudrate All mCK	Scan Gain NonGar NonGar NonGar Scan Gain RuntimeChk Set Gain NonE NonE Set Gain All mCK
Ext I/O 0 Target Position 127 Command Execute	Scan Speed Non Scan Speed RuntimeChk Speed Set Speed Non x Set Speed All mCK	Scan OverLoad NorOverLoad Scan OverLoad Set OverLoad NorOverLoa <u>v</u> Set OverLoad All mCk	Scan Boundary NorUB NorLB Scan Boundary Upper Lower Set Boundary NorLE Set Boundary All #CK
	Return	value	

Select desired wCK ID No. in "Set ID" in drop box, then click "Set ID" button. It shows "Good ID Setting!!!" message, then new wCK ID is shown in Scan ID drop box.

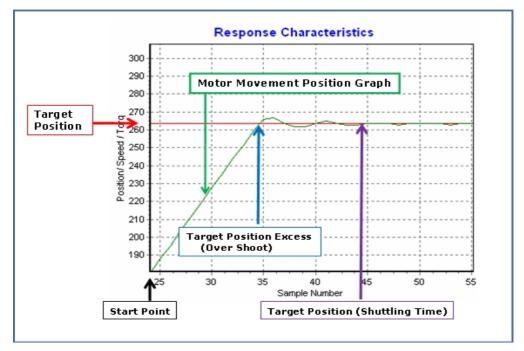
😴 wCK Programer v1.32			
ComPort Check Com Port Com1	BasicSetting SpecialSetting Ac	Setting & Programming tionCon GraphView MotionProgra	aming BULDER
Baud Rate 115200 Check Port Command Pad Target ID Set 2 V Bbit Command Type Move Torq 0 10 bit Move Move Torq 0	Scan ID 0 ▼ Scan ID Set ID 0 ▼ Set ID 0 ▼	Scan Baudrate 115200 Scan Baud Set Baudrate NonBaud V Set Baudrate All wCK	Scan Gain NonGar NonGar NonGar Scan Gain RuntimeChk Set Gain NonG V NonG NonG V Set Gain All wCK
WheelSpdLevel 0	Scan Speed Non	Set OverLoad NonOverLoad	Scan Boundary NorUB NorLB Scan Boundary Upper Lower Set Boundary NorLE
0 254 Control Angle	Set Speed All wCX	Set OverLoad All wCx	Set Boundary All wCk
	Retur	n Value	

Now, wCK ID has changed.

2.2 Change various wCK Parameters

User can change not just wCK ID, but also Speed, Acceleration, Over Load, Boundary, PID gain, etc. All these parameter configuration is done in same way.

🖶 wCK Programmer			
COM Port Baudrate	BasicSetting SpecialSetting Act	Setting & Programming ionCon GraphView MotionPrograming Option	BOB BUILDE
Command Pad	<u>Scan ID</u> 0 ▼ Scan ID	Scan Baudrate 115200 Scan Gain	1 0 0 Scan Gain
Target ID Set 0 8bit Command Type Move(Torq 10 bit Move Move(Torq	Set ID	Set Baudrate	e Gain
WheelSpdLevel 0 v Ext I/0 0 v	Set ID	Set Baud All ID Se	et Gain All ID
Target Position 127 Command Execute	Scan Speed 0 60 Scan Speed	Scan OverLoad 400 Scan Bourn Scan OverLoad Scan Scan Scan Scan Scan Scan Scan Scan	an Boundary
0 254 Control Angle	Set Speed Set Speed All ID	Set OverLoad All ID Set Bound	ary 🔹 🔹 Boundary All ID
FF FF AA 55 AA 55 37 BA 12 00 00 00 00 01 00 00 00 00	3C 21 21 01 FE	FF AA 55 AA 55 37 BA 10 04 00 00	00 01 01 01
	Retur	n Value	


Changed parameter can be initialized to factory setting value as user click "Set Default" button in "Special Setting" tap.

Command Pad Target ID Set 0 -	<u>Scan ID</u> 0 ▼ <u>Scan ID</u>	<u>Scan Ext</u> ✓ <u>Scan Ext I/O</u>	Scan10Pos
the Command Type Move(Torq • 10 bit Move Move(Torq • WheelSpdLevel 0 • Ext IIO 0 •		Set Ext VO	Set10Pos 512 <u>*</u> Set Pos10
Target Position 127 Command Execute	Scan RC Scan RC mode		Modeling
0 254 Control Angle	Set RC v	Set Product Info	Set Default

As "Set Default" function is used to initialize the various parameters at one time, it is useful to check whether the parameters have been changed.

2.3 PID Gain Tuning and wCK Response Feature

When user gives the command to wCK to target point, wCK moves (rotates) to target position. DC motors have the movement value as shown in the below.

Motor needs some time to move to the target point. Because of this reason, many motor control method has been studied in order to reduce this time. wCK is applied PID control method, which is used in many industrial facility. Further, user can configure PID Gain parameter and study the various motor features as wCK Programmer has GraphView function.

1. Requirements

- RBC Box : 1 EA
- wCK : 1 EA
- wCK Cable : 1 EA
- RS-232 Serial Cable(PC cable) : 1 EA
- Window XP based PC and wCK Programmer software

Please refer to the wCK Programmer user manual during this procedure. Connect the wCK, RBC, Power Adapter and PC cable as shown in the below.

% wCK can be connected any connector in RBC Box.

Run wCK Programmer software.

🖉 wCK Programmer			
COM Port Baudrate	BasicSetting SpecialSetting Ac	Setting & Programming tionCon GraphView MotionProgra	1000
ClosePort ScanPort	Scan ID 0 🔹	Scan Baudrate 115200	Scan Gain 1 0 0
Target ID Set 0 🗸	<u>Scan ID</u>	Scan Baud	Scan Gain
8bit Command Type Move(Torq 10 bit Move Move(Torq WheelSpdLevel 0	Set ID	Set Baudrate Set Baud All ID	Pgain Dgain Igain Set Gain V V V Set Gain All ID
Ext 10 0 Target Position 127 Command Execute 127	Scan Speed 0 60 Scan Speed	Scan OverLoad 400 Scan OverLoad	Scan Boundary 254 1 Scan Boundary
	Set Speed All ID	Set OverLoad Set OverLoad All ID	Upper Lower Set Boundary Set Boundary All ID
Control Angle FF FF AA 55 AA 55 37 BA 12 00 00 00 00 01 00 00 00 00	04 00 00 00 02 02 16 14 Fi 3C 21 21 01 FE	J F FF AA 55 AA 55 37 BA 10	0 ⁴ 00 00 08 01 01 01
	Retu	rn Value	

Click **DeenPort** button after select available COM Port.

Click Scan ID, Scan Baud, Scan Gain, Scan Speed, Scan Boundary buttons in order. It shows the present values of wCK.

For PID control study, input Upper 254, Lower 1, then clickt "Set Boundary". If Boundary width is narrow, wCK movement range becomes narrow. Therefore, set maximum width as "(254, 1)".

<u>Scan Boundary</u>	254	1
<u>Scan</u>	Bounda	ary
Set Boundary	Upper 254 💌	Lower
Set Bour	ndary	All ID

% Boundary means wCK movement range width.

2. wCK Programmer function for PID control

- BasicSetting Dialogue to set PID Gain.
- AcionCon Dialogue to move wCK to target point. .
- GraphView function to check wCK movement.

ActionCon and G	raphView Tap	PID Gain Conf	figuration window
🚭 wCK Programmer			
COM Port Baudrate	BasicSetting SpecialSetting Act	ionCon GraphView MotionProgram	
ClosePort ScanPort	Scan ID 0	Scan Baudrate 115200	Scan Gain 1 0 0
Target ID Set 0 v 8bit Command Type Move(Torq v	Set ID 0	Scan Baud	Scan Gain ☐ Runtime Gain Pgain Dgain Igain
10 bit Move Move(Torq y WheelSpdLevel 0	Set ID 0	Set Baudrate Set Baud All ID	Set Gain V V
Ext I/O 0 v Target Position 127	Scan Speed 0 60	Scan OverLoad 400	Scan Boundary 254 1
Command Execute	Scan Speed	Scan OverLoad	<u>Scan Boundary</u>
	Set Speed All ID	Set OverLoad	Set Boundary
0 254 Control Angle	Set Speed All ID	Set OverLoad All ID	Set Boundary All ID
FF FF AA 55 AA 55 37 BA 12 04 00 00 00 00 00 01 00 00	04 00 00 00 02 02 16 14 FF 00 00 00 00 3C 21 21 01 FE	FF AA 55 AA 55 37 BA 10	04 00 00 00 01 01 01 🧧
	Retur	n Value	

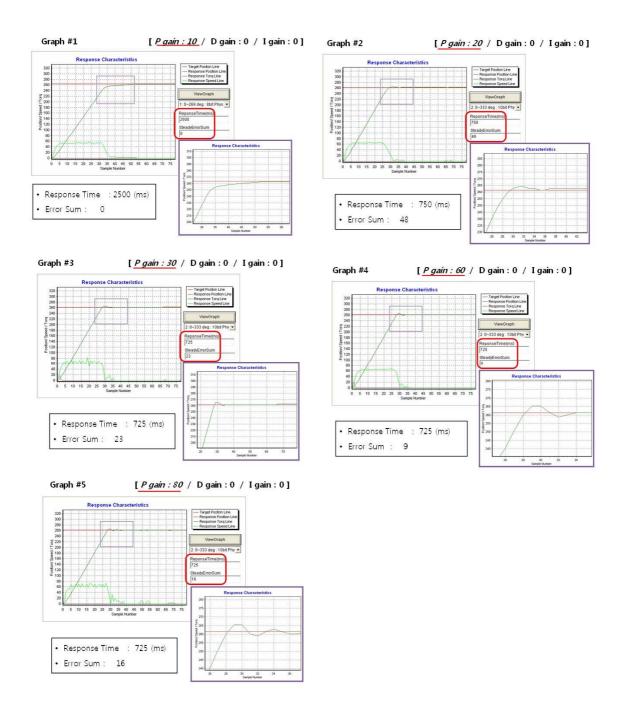
① Set wCK PID Gain.

1	COM Port Baudrate COM1 T15200 ClosePort ScanPort	3 Scan ID 0 - 4 Scan Gain 1 0 0 Scan ID Runtime Gain Pgain Dgain Igain	
	Command Pad	Set 10 - 0 - 0 -	
4	Target ID Set 0 ▼	Set ID Set Gain All ID	
	8bit Command Type Move(Torq 💌		
	T 10 bit Move Move(Torq -		
	WheelSpdLevel 0 -		
	Ext IO 0 💌		
	Target Position 127		_
	Command Execute	1) Match wCK ID and input '10' in Target Position.	
	127	2) Click "Scan Gain" button to check the present Gain value	e.
		3) Input Gain value, then click "Set Gain" button.	
	0 254 Control Angle		

(2) Command wCK movement to target point

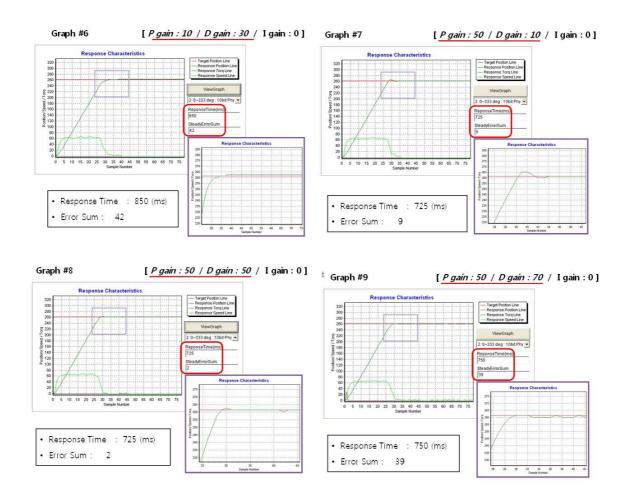
ScanPort 2 d Pad 0 3 Move(Torg • 0 •	Last ID 11 Sc NoniD NoniD NoniD NoniD NoniD NoniD	can wCK CorPosition 10 127 127 127 127 127 127	TarPosAll arPosition 200 127 127 127	PeriodAll Period 2000 2000 2000 2000	SampleNum 80 80 80	IncrementAll Increment 0 0 0			
0 3 Move(lorg - Move(Torg -	NonID NonID NonID NonID	CorPosition 10 127 127 127 127 127 127	arPosition 200 127 127 127	Period 2000 2000 2000 2000	SampleNum 80 80 80	Increment 0 0			
Move(Torq - Move(Torq - 0 -	NonID NonID NonID NonID	10 127 127 127 127 127	200 127 127 127 127	2000 2000 2000	80 80 80	0 0			
Move(Torq - Move(Torq - 0 -	NonID NonID NonID	127 4 127 127 127	127 127	2000	80				
Move(Torq +	NonID NonID	127 127	127		100	0			
0	NonID	127		2000					
0			107		80	0		6	ActionRun
	NonID	100	127	2000	80	0		-	and a constraint of the
0 -		127	127	2000	80	0			
-	NonID	127	127	2000	80	0		-	
40	NonID	127	127	2000	80	0			
10	NonID	127	127	2000	80	0			
Execute	NonID	127	127	2000	80	0			
7	NonID	127	127	2000	80	0			
	NonID	127	127	2000	80	0			
1	NonID	127	127	2000	80	0			
1	NonID	127	127	2000	80	0			
1	NonID	127	127	2000	80	0			
254 I Angle	Torq	Level 0	Last ID 0	▼ Sy	mchronized P	osition Send			
55 37 BA 10 0A 00 0A 00	04 00 00 64 00 09	00 01 01 0 00 09 28 4	11 00 00 0 16 02 02 0			00 3C 21 :	21		
	254 Angle	Creecute NoniD Non	Execute NoniD 127 S5 37 BA 10 0h 00 00 00 01 01 01	Create NonID 127 127 Torq Level Last ID 55 37 86 10 04 00 01 01 01 00 00 00 02 8 46 02 02	Nenib 127 127 2000 Torq Level Last ID 55 37 84 10 44 00 00 101 00 00 00 01	Create NonID 127 127 2000 80 Torq Level V LastID V Synchronized P 55 37 86 10 04 09 09 92 846 02 09 09 08 Bn 09 00 64 99 99 92 846 62 02	Create MoniD 127 127 2000 80 0 NoniD 127 127 2000 80 0 0 0 NoniD 127 127 127 2000 90 0 0 S5 37 80 10 90 90 90 90 90	Nenib 127 127 2000 80 0 Nenib 127 127 2000 80 0 0 Y LastID Y Synchronized Position Send Y Synchronized Position Send 55 37 Bn 10 04 00 00 01 01 01 00 0	55 37 8A 10 04 00 00 08 01 01 01 00 00 00 00 01 00 00 00 00 3C 21 21 aA 08 08 08 64 08 09 08 09 28 46 02 82 88 09 08 88

- A. Click "ActionCon" tap.
- B. Click "Scan wCK" button, and wait around 10 seconds.
- C. It shows the connected wCK ID.
- D. Input desired wCK "Target Position".
- E. Select that wCK ID.
- F. Click "ActionRun" button.
- 3 Check "GraphView"

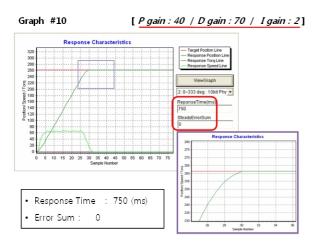

10 bit Move Move(Torq g 220 ViewGraph	COM Port Baudrate COM1 V 115200 V	Setting & Programming BasicSetting SpecialSetting ActionCon GraphView MotionProgramming Options
Bit Market Reponse Time (ms) Reponse Time (ms) <th>Command Pad Target ID Set 0 v bit Command Type Move(Torq v</th> <th>320</th>	Command Pad Target ID Set 0 v bit Command Type Move(Torq v	320
40 20 0 Sample Number	WheelSpdLevel 0 v Ext 10 0 v Target Position 10 Command Execute	2 20 2 100 2 110 0 100 0
		40 20 0 Sample Number

- A. Click "GraphView" tap
- B. Click "ViewGraph" button. Then it shows Graph.
- C. Select proper scale.
- D. Click "SaveGraph" button to save the BMP image, if necessary.

After check the wCK response graph, initialize wCK position in order to set Gain value. In Command Pad panel, click "Command Execute" to initialize the wCK position.


Target Position	10
Command	Execute

As user follows below examples, user can understand wCK movement features in accordance with PID parameters.



As P gain value is increased, wCK response time is decreased. But "Overshoot" value is increased as shown in the above graph. This means, it gives faster response, but target position value is unstable.

Let's change P gain and D gain together.

If user change P gain and D gain together, "overshoot' value is decreased relatively. But target position value is still unstable.

Let's change P, D and I gain value together. wCK response time is decreased, there is no "overshoot" value and it goes target position exactly. wCK response feature would be much improved if PID gain is applied, if user use PID tune-up method.

P, I, D has each characteristics, respectively, as shown in the below.

- P Gain (Proportion Gain) : It reduces wCK response time.
- I Gain (Integral Gain) : It reduces tolerance.
- D Gain (Differential Gain) : It reduces "overshoot" value and make it stable.

Just increasing the Gain value does NOT means that is has good response feature. (In example graph 10, P gain is 40, this is not so high value.)

Each parameter affects each other. Therefore, users should tests several times to optimize the gain value, and do PID control study.

2.4 wCK Free Motion Programming

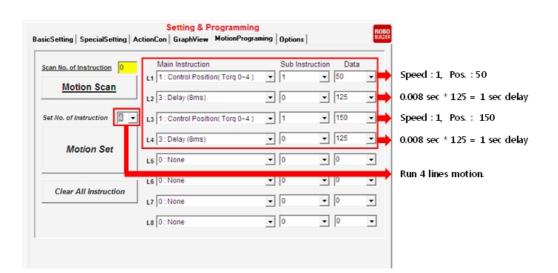
wCK has free motion programming function itself. When user does free motion programming, RBC should be selected "Non-Standard Platform (PF2 orange LED on)" mode. Then, wCK does movement independently as long as electrical power is provided.)

※ Requirements

- RBC : 1 EA / wCK : 2EA / Cds sensor : 1EA
- RS-232 Serial Cable (PC cable)
- wCK Programmer Tool

OM Port Baudrate	_		Setting & Programming	7	
COM4 115200	-	BasicSetting SpecialSetting A	ctionCon GraphView MotionProgramin	9 Options	
OpenPort ScanPor		Scan No. of Instruction	Main Instruction	Sub Instruction	Data
Command Pad			L1 0:None	0 •	0 🔹
Target ID Set 0	-	Motion Scan	L2 0:None	• 0 •	0 🗸
it Command Type Move(Tor	▼ p				
T 10 bit Move Move(Tor	• p	Set No. of Instruction	L3 0 : None		0 💌
VheelSpdLevel 0	*	Motion Set	L4 0:None	• 0 •	0 💌
Ext I/O 0	-		L5 0:None	• 0 •	0 -
Target Position 127					
Command Execute		Clear All Instruction	L6 0:None	• • •	0 💌
127			L7 0:None	• • •	0 💌
			L8 0:None	• 0 •	0 👻
				n	
0 254					
Control Angle					

Below is MotionPrograming tap for wCK free motion programming.


If you look at green box in wCK Programmer, you can see "Main Instruction", "Sub Instruction", "Data", and it has 8 lines in left side from L1 to L8. wCK does 8 motions (L1~L8) in order.

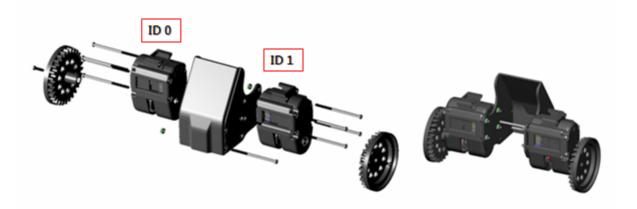
Let's find out what is included and the meaning of "Main Instruction", "Sub Instruction", "Data" columns. The following is free motion programming logic table.

Motion Co	mmand(1 Byte)	Motion Data(1 Byte)
Main Instruction	Sub Instruction	Data
0: None	0	X
1: Position Control	Speed(0~4)	8 bit Position Value
2: Motion Type	1(Passive), 2(Power Down), 3(Wheel CCW), 4(Wheel CW)	The Speed value in Wheel Mode(0~15)
3: Delay Time(Max 4,095 ms)	Upper 4 bit delay value	Lower 8 bit delay value(in ms)
4: DIO	Х	2 bit external port output value
5: Position Conditional Decision	1("==") 2(">") 3("<") 4(">=") 5("<=")	8 bit Position Value
6: A/D Conditional Decision	1("==") 2(">") 3("<") 4(">=") 5("<=")	8 bit external port A/D input value
7: No of Repetition	X	0 : Infinity, 1 to 254(No of repetition)
8: End of Program	X	X

Main Instruction had main instructions (0~8), and Sub Instruction is for detailed instruction for main instruction. Data is position or control values. User can input the values by keyboard.

Example 1] wCK movement from 100 degree to 160 degree in every second with speed 1.

If programming is finished as shown in the above, click "Motion Set" button to save in wCK.


After above message box, click "OK", then power off and on. Then wCK starts free motion itself if power is supplied.

In order to delete free motion programming, click " Clear All Instruction button, and select "0" in Set No. of Instruction to delete the motion.

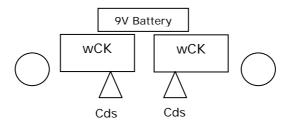
Let's try simple robot with free motion programming.

[Wheel Robot 1]

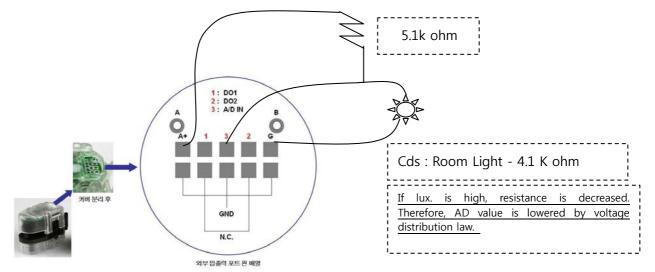
Prepare two wCKs, wCK ID0, wCK ID1. Assemble the wCK as shown in the below. This Robot will not move because it does NOT include RBC Box. However, it would be possible without RBC if you use free motion programming method.

Free motion programming is for each wCK. Therefore, two different programming are needed for twowheeled Robot. In order to move forward, one wCK should move in clockwise direction, and the other wCK should move counterclockwise direction. For backward movement, programming in vice versa.

Let's program two wCKs for forward movement and backward movement in every second interval when power is supplied.


can No. of Instruction 0	Main Instruction	Sub In:	struction Da	ta	
	L1 2 : Passive,Break,WheelCCW,Wh	i€ ▼ 3	• 2	*	A. WCK ID 0, Rotate counterclockwise Dir./Speed :
Motion Scan	L2 3: Delay (8ms)	• 0	• 125	•	B. WCK ID 0, 0.008 sec * 125 = 1 sec delay
Set No. of Instruction	L3 2 : Passive,Break,WheelCCW,Wh	ie 🕶 🛛	• 2	•	C. WCK ID 0, Rotate clockwise Dir./Speed : 2
Motion Set	L4 3: Delay (8ms)	• 0	• 125	•	D. WCK ID 0, 0.008 sec * 125 = 1 sec delay
motion Set	LS 0:None	• 0	• 0	•	
Clear All Instruction	L6 0:None	• 0	• 0	•	
Clear All Instruction	L7 0:None	• 0	• 0	٠	
	L8 0:None	• 0	• 0	•	
can No. of Instruction	Main Instruction	Sub In:	struction Da	ta	A. wCK ID 0. Rotate clockwise Dir /Speed : 2
	Main Instruction		struction Da	ta 💌	A. WCK ID 0, Rotate clockwise Dir./Speed : 2
can No. of Instruction 0 Motion Scan					B. WCK ID 0, 0.008 sec * 125 = 1 sec delay
Motion Scan	L1 2: Passive,Break,WheelCCW,Wh	• 4	• 2	•	
Motion Scan	L1 2 : Passive,Break,WheelCCW,Wh L2 3 : Delay (8ms)	• 4	 2 125 	•	B. WCK ID 0, 0.008 sec * 125 = 1 sec delay
Motion Scan	L1 2: Passive,Break,WheelCCW,Wh L2 3: Delay (8ms) L3 2: Passive,Break,WheelCCW,Wh	€ 4 ▼ 0 € 8	 2 125 2 	•	B. WCK ID 0, 0.008 sec * 125 = 1 sec delay C. WCK ID 0, Rotate counterclockwise Dir./Speed : D. WCK ID 0, 0.008 sec * 125 = 1 sec delay
Motion Scan	L1 2: Passive,Break,WheelCCW,Wh L2 3: Delay (8ms) L3 2: Passive,Break,WheelCCW,Wh L4 3: Delay (8ms)	€ 4 ▼ 0 € 3 ▼ 0	 2 125 2 2 125 125 	•	B. WCK ID 0, 0.008 sec * 125 = 1 sec delay C. WCK ID 0, Rotate counterclockwise Dir./Speed : D. WCK ID 0, 0.008 sec * 125 = 1 sec delay Move Forward
Motion Scan	L1 2: Passive,Break,WheelCCW,Wh L2 3: Delay (8ms) L3 2: Passive,Break,WheelCCW,Wh L4 3: Delay (8ms) L5 0: None	• 4 • 0 • 3 • 0 • 0 • 0	 2 125 2 125 0 	•	B. WCK ID 0, 0.008 sec * 125 = 1 sec delay C. WCK ID 0, Rotate counterclockwise Dir./Speed : D. WCK ID 0, 0.008 sec * 125 = 1 sec delay

※ For ID 0 and ID 1 wCK , it should be programmed respectively.


After programmed it as the above, supply the power into wCKs, then Robot will move forward and backward direction.

[Wheel Robot 2 – Sensor based Robot]

wCK has own I/O port itself. (Digital Output 2, AD Input 1). As you use AD Input, Robot will move as light level. In this example, "Cds sensor" is used.

For Cds sensor, solder with resistance 5.1k as shown in the below.

Program the wCK in wCK Programmer as shown in the below.

Scan No. of Instruction 0 Motion Scan	Main Instruction L1 6 : Compare AD (==>,<,=>,<=) L2 2 : Passive,Break,WheelCCW,Wh	Sub Ins 2 • 1	truction Data	•	Scan No. of Instruction 0 Motion Scan	Main Instruction L1 6 : Compare AD (==,>,<,=>,<=) L2 2 : Passive,Break,WheelCCW,Wh		Iction Data	•
Set No. of Instruction	L3 6 : Compare AD (==,>,<,=>,<=)	▼ 5	▼ 170	•	Set No. of Instruction	L3 6: Compare AD (==,>,<,=>,<=)	▼ 5	▼ 170	•
Motion Set	L4 2 : Passive,Break,WheelCCW,Wh	€ ▼ 4	▼ 5	•	Marian Cat	L4 2 : Passive,Break,WheeICCW,Wh	i€ ▼ 3	▼ 5	•
wotion Set	L5 0:None	• 0	• 0	•	Motion Set	L5 0:None	• 0	▼ 0	•
	L6 0:None	• 0	• 0	•		L6 0:None	• 0	• 0	•
Clear All Instruction	L7 0:None	• 0	• 0	•	Clear All Instruction	L7 0:None	• 0	• 0	•
	L8 0:None	• 0	• 0	•		L8 0:None	• 0	• 0	•

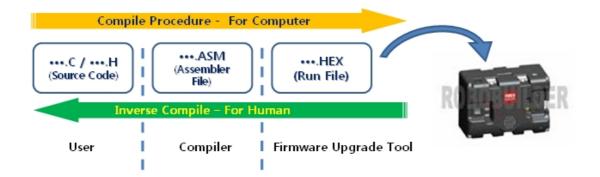
Robot measures wCK light level. Therefore, Robot moves depends on AD set value "170" as programmed in the above.

User can make various wCK application Robots if you use various wCK functions.

3. RBC Firmware Study for User Created Robot

3.1 Firmware and C Program

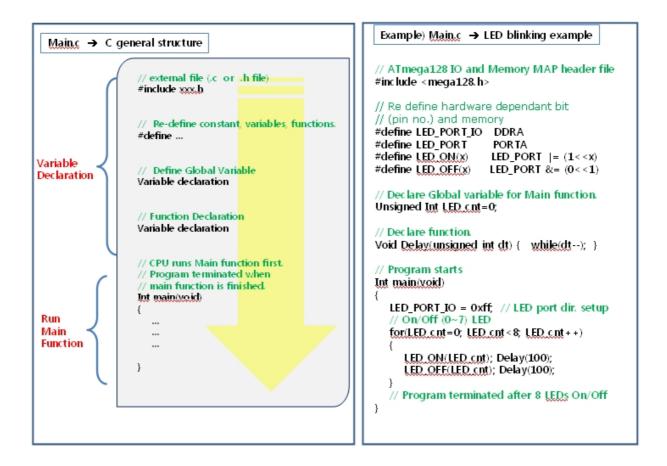
Firmware is generally defined as a micro program that is saved in ROM memory. As an aspect of program, it is almost same as software, but it has much closer relationship with hardware. Firware is faster than software, but slower than hardware. And it is not comfortable for general user. It is quite dependent on hardware, therefore it should be changed when hardware component is changed. Firmware can be considered as a software that is close to hardware.



If you use RoboBuilder Firmware Upgrade Tool, user-created firmware can be saved into RBC and is possible to operate wCK. This motivates user to study firmware easily. Generally, user needs certain electronic boards or other hardware devices to study firmware, but RoboBuilder user does NOT need because RBC and RBC Firmware Tool are everything that user needs to study firmware.

If user-created firmware is not working at all, user can simply recover it with RoboBuilder published firmware version in RoboBuilder website.

How general user can create own firmware or how it can upload the firmware into RBC box? Let's find out in next pages. The below is the simple structure of RoboBuilder firmware generation.

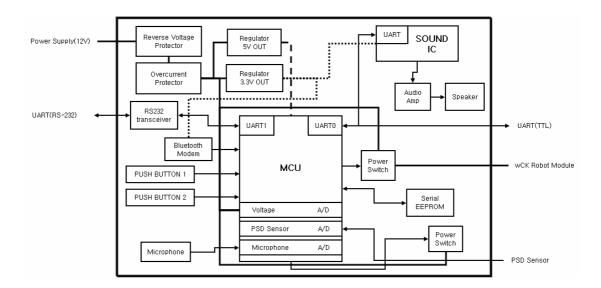

- Write C language program.
- User compiler (ex. CodeVisionAVR), to generate .ASM, or .HEX file.
- Upload firmware file (*.hex) into RBC Box.

For C coding, user should know C language programming well. Please refer to the various C programming books in the bookstore.

In this example, we assume that user knows basic C programming method.

<u>Main.c</u> → C gene	$\underbrace{Main.c} \rightarrow C \text{ general structure}$						
ſ	// external file (.c_orh file) #include xxx.h						
	// Re-define co <mark>nstant, variab</mark> les, functions. #define						
Variable Declaration	// Define Global Variable Variable declaration						
l	// Function Decl <mark>aration</mark> Variable declara <mark>tion</mark>						
(// CPU runs Main function first.						
	// Program terminated when main function is finished. Int main(void)						
Run Main Function	·						
	}						

Below is LED ON/OFF program flows by C language.


#include <mega128.h> is header file to use "DDRA", "PORTA".

Complicated sentences is redefined with "#define" word to understand program easily.

This program is for 8 LEDs On/Off one time. If "#define" word is not used, program would be like the below.

Example) Main.c \rightarrow LED blinking example	
#include <mega128.h></mega128.h>	
Int main(xoid)	
Unsigned int dt=100;	
DDRA = 0xff; PORTA = (1<<0);	PORTA &= (0<<0); while (dt); dt=100;
PORTA = (1<<1); while(dt); dt=100; PORTA = (1<<2); while(dt); dt=100;	· · · · · · · · · · · · · · · · · · ·
PORTA = (1<<3); while(dt); dt=100; PORTA = (1<<4); while(dt); dt=100;	
PORTA = (1<<5); while(dt); dt=100; PORTA = (1<<6); while(dt); dt=100;	PORTA &= (0<<5); while (dt); dt=100;
PORTA = (1<<7); while(dt); dt=100;	
3	

3.2 RBC Hardware Structure and I/O MAP

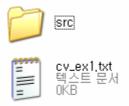
Below is RBC hardware block diagram.

User can understand how this hardware is connected. RBC is connected with power supply, RS-232 communication, TTL UART, wCK power line and PSD sensor.

Below is RBC micro-controller ATmega128 PIN allocation and I/O map.

		חר	AREF	D PF0 (ADC0)	D PF1 (ADC1)	PF2 (ADC2)	D PF3 (ADC3)	PF4 (ADC4/TCK)	PF5 (ADC5/TMS)	PF6 (ADC6/TD0)	D PF7 (ADC7/TDI)	D GND		PA0 (AD0)	D PA1 (AD1)	🗆 PA2 (AD2)	_			
	1 2	0 8 8	8	6	8	59	28	57	56	55	54	8	52	51	20	6748	Ļ		3 (A	D 2\
RXD0/(PDI) PE0	2	0														47			3 (A 4 (A	
(TXD0/PD0) PE1	2															46			4 (A 5 (A	
(XCK0/AIN0) PE2	4															45	· F		6 (A	
(OC3A/AIN1) PE3	5															44			7 (A	
(OC3B/INT4) PE4	6															43	· Г		2(A	
(OC3C/INT5) PE5	7															42	. –		7 (A	
(T3/INT6) PE6	8															4			6 (A	
(ICP3/INT7) PE7	9															40	ьE		5 (A	
(SS) PB0 🗆	10															39	ēΕ		4 (A	
(SCK) PB1	11															38	зE		3 (A	
(MOSI) PB2	12															37	7E		2 (A	
(MISO) PB3	13															36	۶Ŀ	PC	1 (A	9)
(OC0) PB4 🗆	14															35	۶Ŀ	PC	0 (A	8)
(OC1A) PB5 [15															34	ŧþ	PG	1(R	D)
(OC1B) PB6 🗆	16 [•	0	-	0	~	-+	10	6		~	•	~	-	830	зþ	PG	0(W	R)
l	-		÷	8	2	8	8	7	125	128	5	<u>%</u>	13	8	5	~				
	5	5 8	X	ъ	VCC	ğ	3	Ξ	ž	F	8	ğ	¥	8	ĕ	5				
	ğ	Ĩ	ĕ	RESET	¥	GND	XTAL2	XTAL1	P	P	Ы	P	Ы	Ы	P	(T2) PD7				
	÷	TOSC2/PG3	5	Ω.			×	×	Ê	E	112	Ê	(ICP1) PD4	(XCK1) PD5	(T1) PD6	1 2				
	100100100	ξĔ	TOSC1/PG4						(SCL/INT0) PD0	(SDA/INT1) PD1	(RXD1/INT2) PD2	(TXD1/INT3) PD3	Ê,	ž						
	- 2	2	-						SC	SD	2	R								
	_ S	2							-	-	Ш	E								

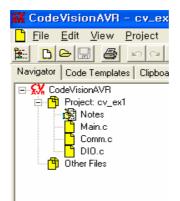
PIN No.	PIN Name	I/O Dir	Description
1	PEN	Х	Not Connected
2	(RXD0/PDI) PE0	I	Communcation with wCK, Sound IC (YNN Model)
3	(TXD0/PDO) PE1	0	Communcation with wCK, Sound IC (YNN Model)
4	(XCK0/AIN0) PE2	Х	Not Connected
5	(OC3A/AIN1) PE3	0	Speaker Output (YNN Model)
6	(OC3B/INT4) PE4	Х	3 Axis sensor (SCK)
7	(OC3C/INT5) PE5	Х	3 Axis sensor (SDI)
8	(T3/INT6) PE6		IR Remote Controller Receiver Module (38kHz)
9	(ICP3/INT7) PE7	I	Bluetooth Signal Receiver
10	(SS)	Х	Not Connected
11	(SCK) PB1	0	For ISP
12	(MOSI) PB2	0	Power Supply 24LC256T-I/SN (High : ON, Low : OFF)
13	(MISO) PB3	Х	Not Connected
14	(OC0) PB4	0	Battery Charging (High : Charging ON, Low : Charging OFF)
15	(OC1A) PB5	0	PSD Sensor GP2Y0A21YK0F Power Control (High : ON, Low : OFF)
16	(OC1B) PB6	0	Sound IC Reset (High : Disabled, Low : Enabled)
17	(OC2/OC1C) PB7	Х	Not Connected
18	TOSC2 / PG3	Х	Not Connected
19	TOSC1 / PG4	Х	Not Connected
25	(SCL/INT0) PD0	0	For Serial EEPROM Communication (SCL)
26	(SDA/INT1) PD1	I/O	For Serial EEPROM Communication (SDA)
27	(RXD1/INT2) PD2	I	Communication with PC
28	(TXD1/INT3) PD3	0	Communication with PC
29	(ICP1) PD4	Х	Not Connected
30	(XCK1) PD5	Х	Not Connected
31	(T1) PD6	Х	Not Connected
32	(T2) PD7	0	wCK power supply (High : ON, Low : OFF)
33	(WR) PG0	Х	Not Connected
34	(RD) PG1	Х	Not Connected
35	(A8) PC0	Х	Not Connected
36	(A9) PC1	Х	Not Connected
37	(A10) PC2	Х	Not Connected
38	(A11) PC3	Х	Not Connected
39	(A12) PC4	Х	Not Connected
40	(A13) PC5	Х	Not Connected
41	(A14) PC6	Х	Not Connected
42	(A15) PC7	0	Power LED (Red)
43	(ALE) PG2	0	Power LED (Green)
44	(AD7) PA7	0	Error LED (Red)
45	(AD6) PA6	0	Run LED (Green)
46	(AD5) PA5	0	Run LED (Blue)
47	(AD4) PA4	0	PF2 LED (Orange)
48	(AD3) PA3	0	PF1 LED (Red)
49	(AD2) PA2	0	PF1 LED (Blue)
50	(AD1) PA1	I	PF2 Switch (High : Not pressed, Low : Pressed)
51	(AD0) PA0	I	PF1 Switch (High : Not pressed, Low : Pressed)
54	(ADC7/TDI) PF7	I	For ISP


55	(ADC6/TDO) PF6	0	For ISP
56	(ADC5/TMS) PF5	0	For ISP
57	(ADC4/TCK) PF4	0	For ISP
58	(ADC3) PF3	I	MIC OUT(0~5V)
59	(ADC2) PF2	I	GND
60	(ADC1) PF1	ļ	Input Voltage (=wCK Output Voltage x 560 / 1560)
61	(ADC0) PF0	l	PSD Sensor - GP2Y0A21YK0F Signal (0~3.2V)

In order to program firmware, user should know I/O MAP, however, it is difficult to memorize all of the above. Therefore, check the necessary part when user program the certain firmware.

3.3 C Programming with Motion File

Download the C Programming with motion file data from RoboBuilder website (Support - Specialist Tip section).


In "cv_exam" folder, below files are located.

If CodeVisionAVR is installed, cv_ex1.prj is shown as the above. Click "cv_ex1.prj".

File structure would be as the below.

Example project has three files (Main.c / Comm.c / DIO.c).

Double-Click "Main.c".

```
2
3
   11
            RoboBuilder MainController Sample Program 1.0
   11
                                                                2008.04.14 Robobuilder co., 1td.
   11
           Tap Size = 4
 4
   //-----
5
6
7
   #include <megal28.h>
8
   // Standard Input/Output functions
9
   #include <stdio.h>
10
   #include <delay.h>
11
12
13
14
    #include "Macro.h"
    #include "Main.h"
    #include "Comm.h"
15
    #include "Dio.h"
16
    #include "math.h"
17
18
   // Flag -----
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

        bit
        F_PLAYINC;
        // Show the motion running

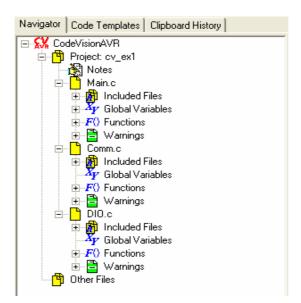
        bit
        F_DIRECT_C_EN;
        // wCK direct control mode (l:Available, 0:Not available)

    // Button Input------
    WORD
          gBtnCnt;
                                            // Button press process counter
    // Time Measurement -----
    WORD gMSEC;
    BYTE
            gSEC;
   BYTE gMIN;
BYTE gHOUR;
   // UART Communication -----
                                                                               ------

      char
      gTx0Buf[TX0_BUF_SIZE];
      // UART0 transmission buffer

      BYTE
      gTx0Cnt;
      // UART0 transmission idle byte number

      BYTE
      gRx0Cnt;
      // UART0 receiving byte number


      BYTE
      gTx0BufIdx;
      // UART0 transmission buffer index

      char
      gRx0Buf[RX0_BUF_SIZE];
      // UART0 transmission buffer

   BYTE gRxOCnt;
BYTE gTxOBufIdx;
char gPxOPutition
   BYTE
35
36
```

It looks quite complicated code, however, you can just take a look at the outline now. Most "#define" word is included in "xxx.h" file.

Press [F9] to compile it, and click [OK].

It shows each include files, used variables and used functions. If you check out [Macro.h] file, there are many "#define" words.

//====================================		
#define BYTE #define WORD #define DWORD #define BYTEP #define WORDP #define SBYTE #define SWORD	unsigned char unsigned int unsigned long unsigned char* unsigned int* signed char signed int	
// BIT SET		
//====================================	SET_BIT0(x) SET_BIT1(x) SET_BIT2(x) SET_BIT3(x) SET_BIT4(x) SET_BIT5(x) SET_BIT5(x) SET_BIT6(x) SET_BIT7(x)	$ \begin{array}{l} (x & = 0 \times 01) \\ (x & = 0 \times 02) \\ (x & = 0 \times 04) \\ (x & = 0 \times 08) \\ (x & = 0 \times 10) \\ (x & = 0 \times 20) \\ (x & = 0 \times 40) \\ (x & = 0 \times 80) \end{array} $

Dividing the code with several files are effective way to mange and understand it.

3.4 RBC LED Control – Understanding RBC I/O

Let's change the example project and control RBC Power, Run, Error, PF1 and PF2 LED button.

※ Requirements

- RBC : 1EA
- RS-232 Serial Cable(PC cable)
- RBC Firmware Upgrade Tool
- CodevisionAVR Complier
- Published RBC Firmware

Let's check out RBC IO MAP first for controlling 5 LED in RBC.

42	(A15) PC7	0	Power LED (Red)
43	(ALE) PG2	0	Power LED (Green)
44	(AD7) PA7	0	Error LED (Red)
45	(AD6) PA6	0	Run LED (Green)
46	(AD5) PA5	0	Run LED (Blue)
47	(AD4) PA4	0	PF2 LED (Orange)
48	(AD3) PA3	0	PF1 LED (Red)
49	(AD2) PA2	0	PF1 LED (Blue)

It is "PIN No", "PIN Name", "IO Direction", "Description" in left order.

For example, Power LED(Red) is connected with ATmega128 No. 42 - PC7 Pin. Power LED (Red) is On / Off in accordance with Pin output. However, user can not check this only with IO MAP. Therefore, let's find out in source code level.

svigator Lode Lemplates			
CodeVisionAVB	2 /// Hardware depenant definit:	lons (Main.h)	
E Project cv_ex1	4 //#define	EXT_INTO_ENABLE SET_BIT6(GICR)	
Notes	5 //#define	EXT_INTO_DISABLE CLR_BITG(GICR)	
B- Main.c	6	BAT_INTO_PASADDB OBE_DATO(OACA)	
E-M Included Files	7 #define PF1_LED1_ON	CLR_BIT2(PORTA) // BLUE	
- 12 mega128.h	8 #define PF1_LED1_OFF	SET BIT2 (PORTA)	
- A stdio.h	9 #define PF1_LED2_ON	CLR_BIT3(PORTA) // GREEN	
- Al stdarg.h	10 #define PF1_LED2_OFF	SET_BIT3 (PORTA)	
w stoargin	1 #define PF2_LED_ON	CLR BIT4(PORTA) // YELLOW	
delay.h	2 #define PF2_LED_OFF	SET_BIT4(PORTA)	
	3 #define RUN_LED1_ON	CLR_BITS(PORTA) // BLUE	
	4 #define RUN LED1 OFF	SET_BITS(PORTA)	
	5 #define RUN_LED2_ON	CLR_BIT6(PORTA) // GREEN	
	6 #define RUN LED2 OFF	SET_BIT6 (PORTA)	
- 🔏 math.h	17 #define ERR LED ON	CLR_BIT7(PORTA) // RED	
	18 #define ERR LED_OFF	SET_BIT7 (PORTA)	
	9 #define PWR_LED1_ON	CLR_BIT2 (PORTG) // GREEN	
	20 #define PWR_LED1_OFF	SET_BIT2 (PORTG)	
🖻 🚺 Comm.c 🔰 💈	21 #define PWR_LED2_ON	CLR_BIT7(PORTC) // RED	
🗈 🚮 Included Files 🔰 💈	22 #define PWR_LED2_OFF	SET_BIT7(PORTC)	
	<pre>23 #define PSD_ON</pre>	SET_BITS(PORTB) // Power Supply Control for Distance Sensor	
F() Functions	24 #define PSD_OFF	CLR_BIT5(PORTB) // Power Supply Control for Distance Sensor	
🗉 🛅 Warnings	25		
		SET_BIT4(PORTB) // Charging Port	
		CLR_BIT4(PORTB)	
Sighal Variables	28		
	<pre>29 #define U_T_OF_POWER</pre>	9500 // Adapter Recognition Standard Voltage[m]	
The Difference	<pre>30 #define M_T_OF_POWER</pre>	8600 // Enough Power Standard Voltage[mV]	
	<pre>31 #define L_T_OF_POWER</pre>	8100 // Minimum Standard Voltage [mV]	
- main.h	2		
- march	32 3 #define MAX_wCK	31 // wCK ID Max. Numbers	
	1/		
	11	UART Communication	
	1/		

If you check out "Main.h", all lines are used "#define". Power_LED (Red) is defined as the below.

#define PWR_LED2_ON CLR_BIT7(PORTC) #define PWR_LED2_OFF SET_BIT7(PORTC)

Therefore, you use "PWR_LED2_ON" in source code. This meaning is clearing PORTC 7 Pin (Output "0"). In "Macro.h", it is defined as

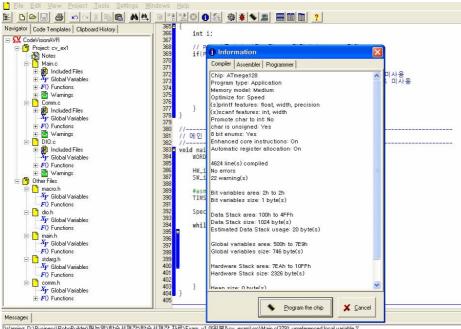
#define $CLR_BIT7(x)$ (x &= 0x7F)

CLR_BIT7(PORTC) is defined as "PORTC &= 0x7F".

CLR_BIT7(PORTC) means '0', output 0XXX XXXX in PORTC. (X is '1' or '0', Don't care). PORTC is hardware name in ATmega128. In order to understand "PORTC &= 0x7F", please refer to the C programming with ATmega128 books.

In source code, use PWR_LED2_ON for Power_Led(Red) on, and use PWR_LED2_OFF for power-off.

Let's revise the code for programming LED blinking in RBC.


// H	xin Punction	//// Hain Function
_ //	main(void) (WOD i, HEBC; HW_init(); // Hardware Initialization SW_init(); // Variable Initialization #arm("sei"); THESK (= 0001; // TimerO Overflow Interrupt Activation SpecialHode(); while(1)(<pre>//</pre>
D	INSEC = gMSEC; PeadSutton(); // Pead Button IoUpdate(); // IO Status Update while(IMSEC==gMSEC);)	<pre>vhile(1){ /* IMSEC = gMSEC; ReadButton(); // Read Button IOUpdate(); // IO Status Update while(IMSEC==gMSEC); */ PUF_LED2_ON; delay_ms(SOO); PUF_LED2_OFF; delay_ms(SOO);) }</pre>

CPU starts from Main(),

- WORD (unsigned int) I, IMSEC,
- HW_init(), SW_init(), SpecialMode()
- Power_LED(Red) On/Off loop in every 0.5 sec.
- * #asm("sei"); TIMSK |= 0x01; is hardware dependency sentence.

Revised part is "/*, */" and Power LED (Red) On/Off loop.

Press, "[SHIFT]+[F9]".

Warning, Dr. Business/RoboBuilder/배뉴얼/한습서제작/한습서제작 자료/Exam_v1.(원본)/cv_exam/src/Main.c(378): unreferenced local variable '' Warning: Dr. Business/RoboBuilder/배뉴얼/한숨서제작/한숨서제작 자료/Exam_v1.(1원본)/cv_exam/src/Main.c(404): unreferenced local variable '' In Information window, click "Cancel", then run RBC Firmware Upgrade Tool.

Connect PC and RBC with PC cable, then power on RBC.

🖥 RBC Firmwa	re Upgrade Tool	
Connection	Com Port Selection:	•
Firmware	File IF [V제작 자료♥Exam_v1.0[원본]♥cv_exam♥src♥M 3. Click here and Push Reset B	
Status: Idle		
		Exit

- Check COM PORT and Baud Rate,
- Select "Main.hex" file that is just made.
- Click [Click here and Push Reset Button].
- Use tweezers and press "Reset" button that is located between PF1 and PF2.

RBC Firmware Upgrade Tool 🔀		
Flash File successfully downloaded,		
확인		

Later, it shows message box.

If succeeded, Power_LED (Red) is blinking in every 0.5 sec. In RBC, 8 LEDs are equipped. Try all other LED blinking in several ways.

* If you would like to recover with normal published firmware, please download from RoboBuilder website (Support – Download section).

Then upgrade the firmware by using RBC Firmware Upgrade Tool.

3.5 Control wCK Position – 8 Bit Command Communication

Revise the example project file to control wCK position.

- * Requirements
 - RBC : 1EA / wCK : 1EA
 - RS-232 Serial Cable(PC Cable)
 - RBC Firmware Upgrade Tool
 - CodevisionAVR Compiler

wCK is smart actuator module through RBC UART communication. Therefore, user need to know the communication between wCK and RBC in order to control wCK.

Firstly, user should know the 'Packet-Communication' concept.

Packet-Communication is receiving and transmitting the pre-engaged information in order. For example, let's say command '01' "Move wCK ID 0", and command '10' is "Stop wCK ID 1". By doing this way, packet-communication would be very effective way to communicate each other.

Let's see how RBC and wCK communicates between them. Download "wCK module protocol table file" from RoboBuilder website. (Support – Tips for Specialist Section)

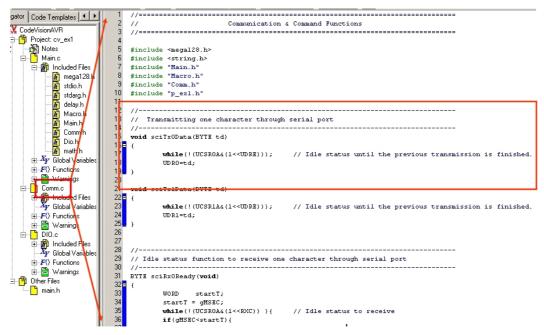
wCK protocol definition

Command		byte 1	b	yte 2	byte 3	byte 4
			765	43210	76543210	76543210
	Position Move	header	Torq	ID	target position	check sum
	Position Move	0xFF		0~30	0~254	(note1)

Let's find out what this table means.

For example,

RBC commands "Move to 200 position with torque 1" to wCK ID 01.


This can be re-written as follows;

0xFF(header) + 0x21(Torq(1)+ID(1)) + 0xC8(Target Position(200)) + 0x69(CheckSum)

We do NOT know what this means, but wCK ID 01 moves to "200" position with torque 1.

Firstly, RBC sends Header '0xFF', then Torque, Target Position and CheckSum in order to wCK. Therefore, user should follow the communication information sequence.

Let's see the below firmware source to control wCK.

In "Comm.c" file, there is "void sciTx0Data(BYTE td)" function.

"void" means there is no return value. And "BYTE td" means input data to be processed. Let's understand this briefly that hardware send data if data is input for 'td' variable.

For example, if you want to send '200' to wCK, just input "sciTx0Data(200)".

To move wCK ID01 to '200' position, it sends 4 hexadecimals.

w	wCK protocol definition				
Command		byte 1	76543210	byte 3 byte 4	
	Position Move	header 0xFF	Torq ID 0~30	target position check sum 0~254 (note1)	
	0xFF	Torq:1 ID:1	Position : 200	(Byte2 Xor Byte3) and 0x7F	
		001 0 0001	1100 1000		
	0xFF	0x21	0xC8	(0x21 ^ 0xC8) & 0x7F	
	0xFF 0x21		0xC8	0x69	
		<mark>를 계산기</mark> 편집(E) 보기(V) 도움말(H)		
				C8 Oword Obword Oword Obve	
	Hex Der Inv		Hyp	Oword Obword Word OByte Backspace CE C	
		Sta F-E	() MC	7 8 9 / Mod And	
		Ave dms Sum sin	Exp In MR x'y log MS	4 5 6 • Or Xor 1 2 3 - Lsh Not	
		Ave dms			

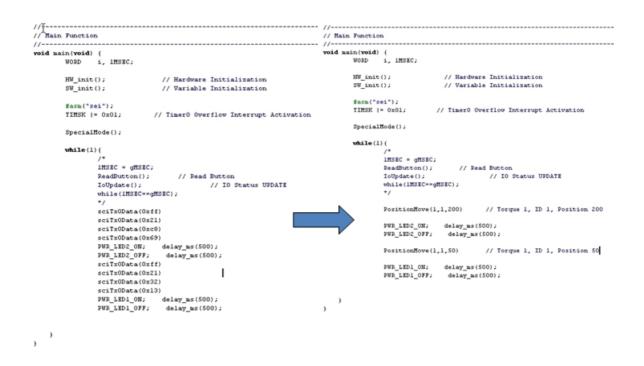
Sending data : [0xFF] + [0x21] + [0xC8] + [0x69]

Therefore, user uses "sciTx0Data" function and data "0xFF, 0x21, 0xC8, 0x69" for programming.

Let's program that wCK moves '200' position and moves '50' position.

Press [SHIFT] + [F9] to generate firmware file.

//		/////Hain Function
//		
void main(voi USD	d) { i, lMSEC;	<pre>void main(void) (</pre>
HV in	hit(); // Hardware Initialization	
SW_ir	<pre>hit(); // Variable Initialization</pre>	HW_init(); // Hardware Initialization
form	("sei");	SW_init(); // Variable Initialization
	<pre>(= 0x01; // Timer0 Overflow Interrupt Activation</pre>	fasm("sei");
Section	ialMode();	TIMSK = 0x01; // Timer0 Overflow Interrupt Activation
speci	arnode();	TIASK = UKUI; // Timero OverTiov Incerrupt Accivation
while	*(1) (SpecialHode();
	/HSEC = gHSEC; PeadButton(); // Pead Button ToUpdate(); // IO Status UPDATE while(HHSEC==gHSEC); */	<pre>vhile(1)(/* IMSEC = gMSEC; ReadButton(); // Read Button</pre>
	<pre>PWD_LED2_ON; delay_ms(SOO); PWD_LED2_OFF; delay_ms(SOO);</pre>	<pre>IoUpdate(); // IO Status UPDATE while(lHSEC==gHSEC); */ sciTx0Data(0xff)</pre>
,		<pre>sciTxOData(0x21) sciTxOData(0x21) sciTxOData(0xc8) sciTxOData(0x69) PWR_LED2_ON; delay_ms(500); sciTxOData(0x21) sciTxOData(0x21) sciTxOData(0x13) PWR_LED1_ON; delay_ms(500); PWR_LED1_OFF; delay_ms(500);</pre>
)


RBC Power_LED will blink and wCK moves left and right side continuously.

However, it is very uncomfortable to calculate hexadecimal values every time it changes movement values. Therefore, put one function in "Comm.c" file and declare this function in "Comm.h" as shown in the below.

//	BYTE sciRxOReady(void);
// Sbit Command Position Move Function	BYTE sciRxlReady(void);
// Input : torq ID, Position	<pre>void SendOperCmd(BYTE Data1,BYTE Data2);</pre>
// Output : None	void SendSetCmd(BYTE ID, BYTE Data1, BYTE Data2, BYTE Data3);
//	void PosSend(BYTE ID, BYTE SpeedLevel, BYTE Position);
void PositionMove(BYTE torg, BYTE ID, BYTE position)	<pre>void PassiveModeCndSend(BYTE ID);</pre>
{	<pre>void SyncPosSend(void);</pre>
BYTE CheckSum;	WORD PosRead(BYTE ID);
ID = (BYTE)(torg << 5) ID;	<pre>void GetMotionFromFlash(void);</pre>
	<pre>void SendTGain(void);</pre>
CheckSum = (ID ^ position) & 0x7f;	<pre>void SendExPortD(void);</pre>
	<pre>void GetSceneFromFlash(void);</pre>
sciTxOData(Oxff);	<pre>void CalcFrameInterval(void);</pre>
sciTxOData(ID);	void CalcUnitHove(void);
sciTxOData(position);	<pre>void MakeFrame(void);</pre>
sciTx0Data(CheckSum);	void SendFrame(void);
	<pre>void M_BasicPose(BYTE PF, WORD NOF, WORD RT, BYTE TQ);</pre>
	void PositionMove(BYTE torq, BYTE ID, BYTE position);

If you know C language operations <<, |, ^ and &, you can understand the above function.

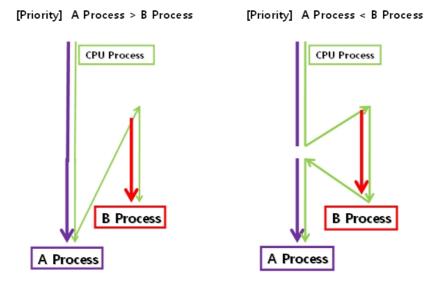
Let's revise the code in "Main()" function as the below.

If you revised all source code, compile the code and make the "*.hex" file.

Download this firmware file to RBC as you use "RoboBuilder Firmware Upgrade Tool".

The above-right side C code is much easier than left side C code to understand.

3.6 Control wCK LED


* Requirements

- RBC : 1EA / wCK : 1EA
- RS-232 Serial Cable (PC cable)
- RBC Firmware Upgrade Tool
- Code VisionAVR Compiler

As wCK position control, let's control wCK I/O PORT (LED) through packet communication.

Actually, RBC and wCK use interrupt communication, therefore it increases CPU operation efficiency.

Then, what is "Interrupt"?

Atmega128 is a CPU that processes one instruction at one time. It could not process two tasks at the same time. But what would be happened if "B" task should be done when CPU is in the middle of processing the "A" task? It stops "A" task, then process "B" task first if "B" task is more important. This is called "Interrupt" method.

Depend on task importance, CPU possession is changed. Generally, main() and external functions are less priority than certain hardware function. RBC-ATmega 128 CPU can decide this priority.

Controlling wCK position is "Polling" method.


But if you use "Interrupt" method, it can response much faster from the environment change.

Let's see the "Polling" method code and "Interrupt" method code in the below.

It looks that c source code of Polling method is shorter and simple.

However, Interrupt method is faster since it uses Data Load method and Function calling process is more effective way. Transmission interrupt function is as the below.

Process from transmitting the first data to the second data, process time is different depends on automatic or manual. Process time is accumulated for this reason. So, CPU is used 100%, or sometime, 80% used. Handling RBC and wCK means that it makes the communications between RBC and wCK smoothly. Using interrupt method is more effective way for handling wCK.

For more detailed information about Interrupt method, please check out ATmega128 books.

Let's control wCK-1108T, wCK-1111T module LED through I/O Write protocol.

In "Comm.c" file, write the function as the left side, declare the function as the right side in "Comm.h" file.

```
// Expansion command I/O write function
                                                                void sciTx0Data(BYTE td);
                                                                void sciTx1Data(BYTE td);
// Input: ID, IOchannel
                                                                BYTE sciRx0Ready(void);
// Output : None
                                                               BYTE sciRx1Ready(void);
void SendOperCmd(BYTE Data1,BYTE Data2);
void IOwrite( BYTE ID, BYTE IOchannel)
                                                                void SendSetCmd(BYTE ID, BYTE Data1, BYTE Data2, BYTE Data3);
void PosSend(BYTE ID, BYTE SpeedLevel, BYTE Position);
     BYTE CheckSum;
                                                                void PassiveModeCmdSend(BYTE ID);
     ID=(BYTE)(7<<5)|ID;
                                                                void SyncPosSend(void);
     IOchannel &= 0x03;
                                                                WORD PosRead(BYTE ID);
    CheckSum = (ID^100^IOchannel^IOchannel)&0x7f;
                                                                void GetMotionFromFlash(void);
                                                                void SendTGain(void)
                                     qTx0Cnt++:
     gTx0Buf[gTx0Cnt]=HEADER;
                                                                void SendExPortD(void);
     gTx0Buf[gTx0Cnt]=ID;
                                     gTx0Cnt++;
                                                                void GetSceneFromFlash(void)
     gTx0Buf[gTx0Cnt]=100;
                                     gTx0Cnt++;
                                                               void CalcFrameInterval(void);
void CalcUnitMove(void);
    gTx0Buf[gTx0Cnt]=I0channel; gTx0Cnt++;
gTx0Buf[gTx0Cnt]=I0channel; gTx0Cnt++;
                                                                void MakeFrame(void)
    gTx0Buf[gTx0Cnt]=CheckSum; gTx0Cnt++;
                                                                void SendFrame(void);
                                                               void M_BasicPose(BYTE PF, WORD NOF, WORD RT, BYTE TQ);
     gTx0BufIdx++;
                                                                                                BYTE ID, BYTE position);
                                                                                  ORVIE
                                                                                          tor
                                                               void IOwrite( BYTE ID, BYTE IOchannel);
     sciTx0Data(gTx0Buf[gTx0BufIdx-1]);
1
```

Let's analyze | IOwrite(ID, IOchannel) | function.

```
void IOwrite( BYTE ID, BYTE IOchannel)
         BYTE CheckSum unsigned char 8bit checksum
         ID = (BYTE)(7<<5) ID; Write wCK ID on sub 5 bit to control
         Shift 5 bit left side
         Overwrite on ID variable.
         IOchannel &= 0x03; IOchannel & 0000 0011 = 0000 00XX
                              // Upper 6 bits are don't care, Activate sub 2 bits
         CheckSum = (ID^100^IOchannel^IOchannel)&0x7f;
         CheckSum = (ID Xor 100 Xor IOchannel Xor IOchannel) And 0x7F
         gTx0Buf[gTx0Cnt]=HEADER
                                                        gTx0Cnt++;
         gT \times Buf[0] = 0 \times FF
         gTx0Buf[gTx0Cnt]=ID;
                                               gTx0Cnt++;
         gT×0Buf[gT×0Cnt] = 100;
                                               gTx0Cnt++;
                            IO Write Command Mode 100
         gTx0Buf[gTx0Cnt]=IOchannel;
                                               gTx0Cnt++;
         gTx0Buf[gTx0Cnt]=IOchannel;
                                              gTx0Cnt++;
         gTx0Buf[gTx0Cnt]=CheckSum;
                                              gTx0Cnt++;
         gTx0BufIdx++;
         sciTx0Data(gTx0Buf[gTx0BufIdx-1]);
         gTx0Buf[0] Transmission Starts
}
```

<pre>void main(void) { WORD i, lMSEC;</pre>	<pre>void main(void) { WORD i, IMSEC;</pre>
HW_init(); SW_init();	HW_init(); SW_init();
// #asm("sei"); TIMSK != 0x01;	#asm("sei"); TIMSK = 0×01;
SpecialMode();	<pre>SpecialMode();</pre>
<pre>while(1){ /* IMSEC = gMSEC; ReadButton(); IoUpdate(); while(IMSEC==gMSEC); */ PositionMove(1, 1, 200); PWR_LED2_ON; delay_ms(500); PWR_LED2_OFF; delay_ms(500); PositionMove(1, 1, 50); </pre>	<pre>while(1){ /* IMSEC = gMSEC; ReadButton(); IoUpdate(); while(IMSEC==gMSEC); */ PositionMove(1, 1, 200); IOwrite(1, 0); PMR_LED2_ON; delay_ms(500); PWR_LED2_OFF; delay_ms(500); PositionMove(1, 1, 50); </pre>
<pre>PWR_LED1_ON; delay_ms(500); PWR_LED1_OFF; delay_ms(500);</pre>	IOwrite(1, 3); PWR_LED1_ON; delay_ms(500); PWR_LED1_OFF; delay_ms(500);
}	}

Please make "*.hex" file and download to RBC.

wCK will move from 200 position to 50 position as wCK internal LED is blinking.

3.7 Configure wCK Parameters - Configure Command and Read Data

* Requirements

- RBC : 1EA / wCK : 1EA
- RS-232 Serial Cable(PC Cable)
- RBC Firmware Upgrade Tool
- CodevisionAVR Compiler

If wCK ID has been changed, existed programs wCK position control and wCK LED control does NOT work. wCK ID information is included in packet.

Therefore, it does not work if wCK ID is not matched.

Let's check the communication protocol first. ID set protocol is as the below.

	Command	header	mode ID		mode ID		mode	Byte4		CheckSum
ſ	ID Set	0XFF	7	0~30	12	new ID	= byte4			
L	10 001	VAII V	1 1	050		0-254	0,101			

6 byte data is transmitted totally.

[header] + [mode | ID] + [mode] + [newID] + [Byte5 (newID)] + [CheckSum]

First [mode] means Configure Command, second [mode] means ID Set.

In "Comm.c" file, below source code is included.

```
Ā-----
// wCK Parameter Configuration
         : Datal, Data2, Data3, Data4
// Input
// Output
            : None
11---
       _____
void SendSetCmd(BYTE ID, BYTE Data1, BYTE Data2, BYTE Data3)
£
      BYTE CheckSum;
      ID=(BYTE)(7<<5)|ID;
      CheckSum = (ID^Datal^Data2^Data3)60x7f;
      gTxOBuf[gTxOCnt]=HEADER;
      gTx0Cnt++;
                                 // Increase byte number to be transmitted.
      gTx0Buf[gTx0Cnt]=ID;
      gTx0Cnt++;
                                // Increase byte number to be transmitted.
      gTxOBuf[gTxOCnt]=Datal;
      gTx0Cnt++;
                                 // Increase byte number to be transmitted.
      gTx0Buf[gTx0Cnt]=Data2;
      gTx0Cnt++;
                                 // Increase byte number to be transmitted.
      gTx0Buf[gTx0Cnt]=Data3;
                                // Increase byte number to be transmitted.
      gTx0Cnt++;
      gTx0Buf[gTx0Cnt]=CheckSum;
      gTx0Cnt++;
                                // Increase byte number to be transmitted.
ł
```

Data to be transmitted are 6 Bytes. 2 Bytes are Header and CheckSum, and in "SendSetCmd" function, Configure Command (mode(7)) is shifted left side automatically. Therefore, you should decide "ID, Data1, Data2, Data3".

If you check out communication protocols again, "Mode(12)" value should be input in Data1. In Data2 and Data3, you can input ID No. to be changed.

SendSetCmd (wCK ID to be controlled, 12, new ID, new ID).

For example, if you want to change the wCK ID with "10", it should be like the below.

SendSetCmd (1, 12, 10, 10)

Let's include ID Set command in the control wCK LED source code. Last wCK ID was "1". Change the source code and check out the RBC and wCK movement.

```
11--
                   // Main Function
//-----
                     _____
void main(void) {
      WORD i, 1MSEC;
      HW_init();
                                // Initialize Hardware
      SW_init();
                                // Initialize Variables
      #asn("sei");
      TIMSK |= 0x01;
                         // TimerO Overflow Incerrupt activate
      SpecialMode();
                                // Change wCK ID from '1' to '10'
      SendSetCmd(1, 12, 10, 10);
      while(1){
             1MSEC = gMSEC;
            ReadButton(); // Read Button
             IoUpdate();
                                  // IO Status UPDATE
             while(1MSEC==gMSEC);
             */
             PositionMove(1,1,200);
             IOurite(1,0);
                         delay_ms(500);
             PWR_LED2_ON;
             PWR_LED2_OFF; delay_ms(500);
             PositionMove(1,1,50);
             IOwrite(1,3);
             PWR_LED1_ON; delay_ms(500);
PWR_LED1_OFF; delay_ms(500);
   }
}
```

Does wCK LED is blinking and moving left and right side? It blinks only wCK LED, and user will know the reason.

Let's look at the code again. Do you understand "SendSetCmd(1, 12, 10, 10);" function? Let's change with "SendSetCmd(1, ID_SET, 10, 10)." In previous source code, it is difficult to know the meaning of "12" and "10") before you refer the communication protocol table.

Add "#define ID_SET 12" in "Main.h" file.

/		
/ Ha	in Function	
/		
oid n	ain(void) (
	WORD i, 1MSEC;	
	HW_init(); // Initialize Hardware	#define RUN LED2 OFF SET BIT6(PORTA)
	SW_init(); // Initialize Variables	#define ERR LED ON CLR BIT7(PORTA) // RED
		#define EPR_LED_OFF SET_BIT7(PORTA)
	fash("sei");	<pre>#define PWR_LED1_ON CLR_BIT2(PORTG) // GREE</pre>
	TIMSK = 0x01; // Timer0 Overflow Interrupt activate	#define PWR_LED1_OFF SET_BIT2(PORTG)
		#define PWR_LED2_ON CLR_BIT7(PORTC) // RED
	SpecialMode();	#define PWR_LED2_OFF SET_BIT7(PORTC) #define PSD_ON SET_BIT5(PORTB)
		#define PSD_ON SET_BITS(PORTB) #define PSD_OFF CLR_BITS(PORTB)
	SendSetCnd(1, ID_SET, 10, 10); // Change wCK ID from '1' to '1	
	The second	fdefing CHARGE ENABLE SET_BIT4(PORTB)
	while(1){	#define CHARCE_DISABLE CLR_BIT4(PORTB)
	/*	
	1MSEC = gMSEC;	#define U_T_OF_POWER 9500 #define H_T_OF_POWER 8600
	ReadButton(); // Read Button	#define L_T_OF_POWER 8100
	IoUpdate(); // IO Status UPDATE	
	while(1MSEC==gMSEC);	#define MAX_wCK 31
	*/	-
		//
	PositionHove(1,1,200);	// UART Communication
	IOwrite(1,0);	
	PWR_LED2_ON; delay_ms(500);	#define TXO_BUF_SIZE 186 // UARTO #define PXO_BUF_SIZE 8 // UARTO
	<pre>PWR_LED2_OFF; delay_ns(500);</pre>	#define RXL_BUF_SIZE 20 // UART1
	Provide and the Poly	
	PositionHove(1,1,50);	//
	IOwrite(1,3);	// Send Command
	<pre>PWR_LED1_ON; delay_ms(500);</pre>	fdefine ID_SET 12
	<pre>PWR_LED1_OFF; delay_ns(500);</pre>	PUELINE AP_OBI AC
}		

In order to change the wCK ID with "1", revise the code as the below. wCK ID is changed from "10" to "1".

SendSetCmd(10,	ID_SET,	1,	1);

As shown in the above, parameters can be changed from source coding by user.

3.8 C Programming with Motion File

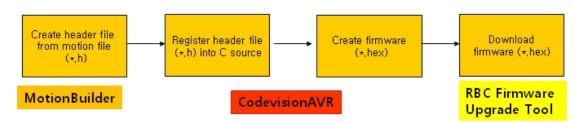
Change the motion file as a header file (*.h) format.

This is not for using RoboBuilder standard firmware, to use user-defined firmware to run motion file directly.

* Requirements

- Robobuilder Robot : 1set
- RS-232 Serial Cable(PC Cable)
- RBC Firmware Upgrade Tool
- CodevisionAVR Compiler

Published RBC firmware data (Please see the Example project : 3-8 Motion Program)


1) Example Motion File

- 1 Project File : p_ex1.prj
- 2 Motion File : m_ex1.rbm
- 2) Example C source file (CodeVisionAVR version 1.24.8d)
 - ① Project File : cv_ex1.prj
 - 2 Unit File : main.c, comm.c, dio.c
 - ③ Header File : main.h, comm.h, dio.h, macro.h, m_ex1.h

NOTE)

MotionBuilder version : 1.10 beta or higher version. CodeVisionAVR : 1.24.8d

Job Procedure

Change into Header File (*.h)

- 1. Run MotionBuilder.
- 2. Click "Open" button, then load "p_ex1.prj" in motion_exam folder.
- 3. Click "Motion List" button.

New	Open	Save AI	Save As	Config	Download	Com	Port E	laudiRa		Ope	nPort St	ani	Port www	.RoboB	uilde	r.net	108
tobot Confi	uration					m	ex1					-		17.7		Save /	
)	Tot	al Scen	e : 10				-	New Motion	Motion	List		
	ID[13] :1	00		ID[10]:5	·	Sce	ne Inde	nx: 0			Repeat					Save	ł
	10[13]:1	⁹⁹	and the second	10[10]:5	•								Set Motion	Delet	te	Test	
\frown	5					G	et Pos	R	estore		Init Pos		New Scene	Past	e	Select	A
-)				a	(•))	D	S.Pos	D.Pos	Disp	Torq	Port		Scene.Name	Frames	Tr.Ti	ne(ms)	Ŀ
14] :205	■ €2		100	105	ID[11]:47	0	125	125	0	2	P0.0	Ξ	Scene_0	1	500		1
-				101	10(11).47	1	179	179	0	2	P0:0		Scene_1	30	1000	1	
	14	-	1000	-	2	2	199	199	0	2	P0:0		Scene_2	10	300		
<u>)</u>					r a	3	88	88	0	2	P0.0		Scene_3	3	100		
15] :205			-	\smile	• •	4	108	108	0	2	P0:0		Scene_2	10	300		
1	ID[5] : 1	126	17.78	D[0]: 125		5	126	126	0	2	P0:0			10	300		
	ř.			P E	10[12]:49	6	72	72	0	2	P0:0			1	50		
γ				-	- 50	7	49	49	0	2	P0.0			1	600		
		ID[6] : 72	ID[1]: 179	1		8	163	163	0	2	P0:0			10	300		
						9	141	141	0	2	P0:0		Scene_1	30	1000		
						10	51	51	0	2	P0.0						
		•	(•)			11	47	47	0	2	P0:0						
0		0[7]: 49	ID[2]: 199))	12	49	49	0	2	P0:0				-		
- (C *))	1.1. 1	and the state of t	ID[3] :	88	13	199	199	0	2	P0:0						
ID[8] :	102				-	14	205	205	0	2	P0:0						
"[e]:		A COLOR		- T - (•))	15	205	205	0	4	P0.0						
0			10	-			-										
K	1	-		Int	4]: 108												1
ID[9] :	141					A ROOM	n Buildin	Ze	ro Setti	na	-	-			-		f
Connee		wCKs C	REATOR_HUN				ALCORON.	100		_	dx:0 Tot						

4. Click "Creator Header File" after you select "ME_FMT#1" in Header File Format.

5. Input Header file name (*.h), then, click "Save" button. In the below example, file name is "p_ex1.h".

Robot Configuration-		미름으로 제	0				2 × ***			r.net 🧧
C	7.67	: 위치()):	HUNO		+ 🗈 (- 11				Save A
6							tion	Motio	n List	Save
10[13]:199						ion	De	ete	Test
\frown	Y						en	e Pa	ste	Select.
							am	e Frame	is Tr.Tin	ne(ms)
[14] :205	4							1	500	
25	파일	이름(N):	o_exi			제장(<u>S</u>)		30	1000	
.) 5 0	D2	형식(I):	Motion Editor Motion	Header File(+,h)	•	취소		3	100	
							100	10	300	
[16] :205 ID[5]: 126	Motion Info	malion				ne_4	10 10	300	
[15] :205/5 ID[5]: 126	Motion Info Motion IIa					ne_6	10 1	300 50	
(15):205 ID[6	1: 126		me:				ine_6	10 1 1	300 50 600	
(15] :205 DI]: 126	Motion IIa	me :				ine_6 ine_8 ine_2	10 1 1 10	300 50 600 300	
(15]:206 (15]:2	0	Motion Ha	me : rame				ine_6	10 1 1	300 50 600	
(15] :205 DIS	0	Motion Ha Num of F	me : rame				ine_6 ine_8 ine_2	10 1 1 10	300 50 600 300	
(15) :205 F		Motion Ha Num of F	me : rame				ine_6 ine_8 ine_2	10 1 1 10	300 50 600 300	
(15) :205 F	0	Motion Ha Num of F	me : rame		ñ	Gose	ine_6 ine_8 ine_2	10 1 1 10	300 50 600 300	
		Motion Ha Num of F	me : rame		_î.	Gose	ine_6 ine_8 ine_2	10 1 1 10	300 50 600 300	
(15) 2205 F		Motion Ha Num of F	me : rame		_ î ;	Qose	ine_6 ine_8 ine_2	10 1 1 10	300 50 600 300	
		Motion Ha Num of F	me : rame		ň	Qose	ine_6 ine_8 ine_2	10 1 1 10	300 50 600 300	

- 6. It is asked whether you see the generated header file. If you click "Yes", it shows header file contents.
- 7. Header file is generated successfully.

Registering header file in C source code

- 1. Move 'p_ex1.h' file into "cv_exam\src" folder.
- 2. Load 'cv_ex1.prj' in CodeVision.
- 3. Add below code in "comm.c" file.

#include "p_ex1.h"

4. Match the below array name with motion name. (Use big letter.) For instance, motion name is "M_EX1",

gpT_Table	= M_EX1_Torque;
gpE_Table	= M_EX1_Port;
gpPg_Table	= M_EX1_RuntimePGain;
gpDg_Table	= M_EX1_RuntimeDGain;
gpIg_Table	= M_EX1_RuntimelGain;
gpFN_Table	= M_EX1_Frames;
gpRT_Table	= M_EX1_TrTime;
gpPos_Table	= M_EX1_Position;
Motion.NumOfScene	= M_EX1_NUM_OF_SCENES;
Motion.NumOfwCK	= M_EX1_NUM_OF_WCKS;

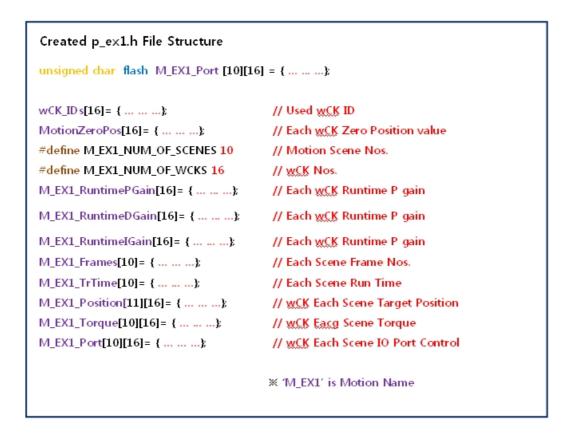
5. Header file registering finished.

Create firmware file (*.hex)

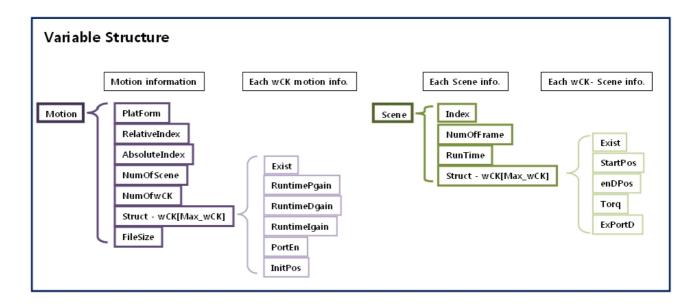
- 1. Click Project-Make menu in CodeVisionAVR, or press "Shift" + "F9" key.
- 2. firmware file (*.hex) will be generated.

Download firmware and Play RoboBuilder

- 1. Connect Power Adapter and PC Cable, then Power on RBC.
- 2. Run RBC Firmware Upgrade Tool and set proper COM Port.


RBC Firmware Upgrad	e Tool		
	rt Selection: te Selection:	Com 1	
Firmware File 🔽	D:₩Exam_v1.0∀	∀cv_exam₩src₩Main,hex Click here and Push Reset Butto	n
Status: Idle			
			E <u>x</u> it

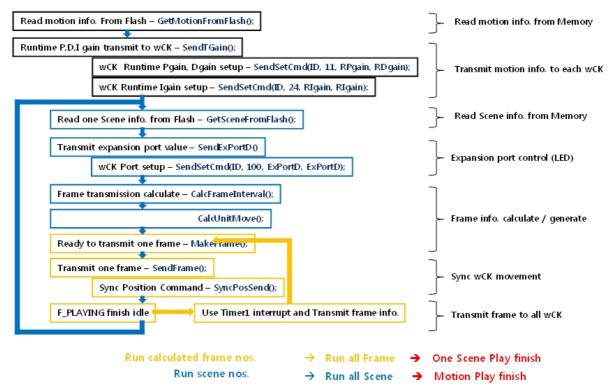
- 3. Click 'Click here and Push Reset Button'.
- 4. Press Reset button (It is located between PF1 and PF2 button), then it starts upgrade.
- 5. If finished, it shows 'Flash File successfully downloaded.' message box.


RBC Firmware Upgrade Tool	_ 🗆 X
Connection Com Port Selection: Com	n 1
Baud Rate Selection: 1152	200
Firmware File Cancel	re Upgrade Tool X ⓒ successfully downloaded. 확인
Status: Sending FLASH File - lines remaining	0
	E <u>x</u> it

6. Disconnect RoboBuilder from PC, then press PF1 button to check out.

Generated motion header file has wCK torq, target position, frame no., etc. This information is saved in C program header file as an array. C program use these data to control wCK.

Generated header file data are assigned as the structure members. Data is divided Motion data and Scene data. Based on these two data, frame data is needed to connect each Scene data. And it send the "Position move" instruction to wCK.


In example source code, SampleMotion() function should be included in order to run motion header file. SampleMotion() function load various data and run motion file. Therefore, you can just change the motion file name variable properly if you would like to run other motion file.

<pre>gpT_Table gpE_Table gpPg_Table gpDg_Table gpIg_Table gpFN_Table gpFN_Table gpPos_Table Motion.NumOfScene Motion.NumOfwCK M_PlayFlash();</pre>	<pre>M_EX1.Torque; M_EX1.Port; M_EX1.RuntimePGain; M_EX1.RuntimeDGain; M_EX1.RuntimeIGain; M_EX1.Frames; M_EX1.Frames; M_EX1.TrTime; M_EX1.Position; M_EX1.NUM_OF_SCENES; M_EX1.NUM_OF_WCKS;</pre>	<pre> float tmp; WORD i; GetMotionFromFlash(); SendTGain(); for(i=0;i<motion.numofscene;i++){ <="" calcframeinterval();="" calcunitmove();="" getscenefromflash();="" gsidx="i;" makeframe();="" pre="" sendexportd();="" sendframe();="" }=""></motion.numofscene;i++){></pre>
Motion name Pointer reference Run loaded motio	of header file motion in n	while(F_PLAYING); } fo. }

If you look at the above source code, "M_PlayFlash()" function gets motion information and make and send the frames to each wCK.

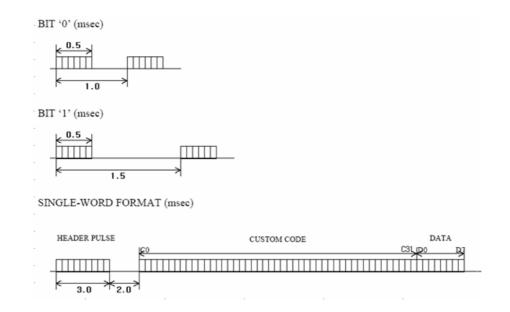
Let's check out the below Flow_Chart how M_PlayFlash() function makes motion.

M_PlayFlash() function Flow-chart

M_PlayFlash function is running until motion is finished.

GetMotionFromFlash(), GetSceneFromFlash(), CalcFrameInterval(), SyncPosSend() functions are included in "Comm.c".

If you don't use wCK LED function, you can remove "SendExPortD()" function. Advanced algorithm walking or sensor function can be included in this source code.


So you can build much smarter robot as you do C programming.

3.9 IR Remote Controller with C Programming

***** Requirements

- Robobuilder Robot : 1set
- IR remote controller : 1EA
- RS-232 Serial Cable(PC Cable)
- RBC Firmware Upgrade Tool
- CodevisionAVR Compiler

If you look at the below pictures, it shows IR remote controller pulse signal that divide '0' and '1'. BIT '0' and BIT '1' is different in terms of signal length. BIT '0' signal is 1 ms, while BIT '1' signal length is 1.5ms. If you look at the below SINGLE-WORD FORMAT, IR remote controller sends 5ms Header Pulse at first time, then it sends transmission code.

Header Pulse is ready signal to send "CUSTOM CODE". Real transmission code is "Custom Code", and "Data Code". Therefore, header pulse and data should be distinguished. The best way is to use signal length. If 1~1.5ms signal is in, it is data. If 5 ms signal is in, it is header pulse. In order to know the signal length, check the signal rise and signal fall. This is hardware dependence function. This code is included in published program source. Let's check out the below source code to understand clearly.

```
//-
// Remote Controller IR Receiver Interrupt
//-----
interrupt [EXT_INT6] void ext_int6_isr(void) {
          BYTE width;
                                                     // Signal Length
          WORD i:
                                                     // Temporary Variable
          width = TCNT2;
                                                     // Save Signal Length
          TCNT2 = 0;
                                                     // Initialize Register (Measure signal length)
          if(glrBitIndex == 0xFF){
                                                     // When signal input is idle status
                    // Check whether input signal is 5ms length (header pulse)
                     if((width >= IR_HEADER_LT) && (width <= IR_HEADER_UT)){
                               F_IR_RECEIVED = 0;
                                                              // Receive finish flag inactivate -> Receiving idle status
                               glrBitIndex = 0;
                                                              // Initialize data code number variable
                               for(i = 0; i < IR_BUFFER_SIZE; i++)</pre>
                                                                         // Initialize data buffer
                                          glrBuf[i] = 0;
                    }
          }
          else{
                    // When data code is in the middle of receiving
          // Check whether the received data code '0' is 1ms. If '0', receiving code numbers are increased.
                     if((width >= IR_LOW_BIT_LT)&&(width <= IR_LOW_BIT_UT)) glrBitIndex++;
                     // Check whether the received data code '1' length is 1.5ms
                     else if((width >= IR_HIGH_BIT_LT)&&(width <= IR_HIGH_BIT_UT)){
                               // Input received '1' bit position in order
                     if(glrBitIndex != 0) glrBuf[(BYTE)(glrBitIndex/8)] |= 0x01<<(glrBitIndex%8);
                               else
                                         glrBuf[0] = 0x01;
                                                                        // Increase the received data code number
                               glrBitIndex++;
                    }
                    // When the received code is NOT '0', or '1', either.
                     else glrBitIndex = 0xFF;
                     if(glrBitIndex == (IR_BUFFER_SIZE * 8)){
                                                                   // If input code is filled in buffer
                               F IR RECEIVED = 1;
                                                                   // Receive finish flag setup => Receiving finish
                               glrBitIndex = 0xFF;
                                                                   // Input idle status setup
                    }
          }
}
```

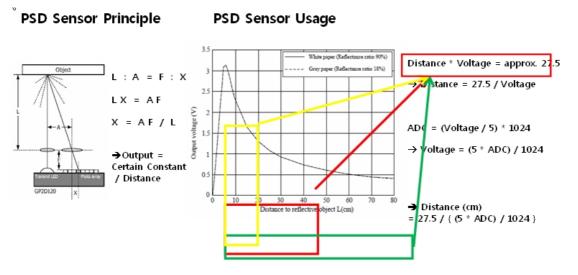
As shown in the above, IR remote controller has own signal status and method. Therefore, you need to check IR remote controller method in advance. Received data has 4 Byte information as the below.

Byte1 + Byte2 + Byte3(remote controller own custom code) + Byte4(data code)

This received 2 data and information are forwarded through "ProcIR()" function.

//// Process IR receiving		
// Process in receiving		
" void Proclr(void)		
{		
WORD i;	// Temporary var	iable
if(F_DOWNLOAD) return;	// When program	n download, IR receiving is NOT available.
If 'C' button, '#' button, NON-Standard	d platform, IR receivi	ng is NOT available
if(F_FIRST_M && glrBuf[3]!=BTN_C &	&& glrBuf[3]!=BTN_S	HARP_A && F_PF!=PF2) return;
if(F_IR_RECEIVED){	// IR receiving flag a	activated → 4 Byte received
EIMSK &= 0xBF;	// No IR receiving	
F_IR_RECEIVED = 0;	// IR receiving flat in	nactivate
// Check whether remote contro	ller is registered in R	BC → Custom code check
	-	[0] && glrBuf[2]==eRCodeL[0])
(glrBuf[0]==eRCodeH[1] &&	glrBuf[1]==eRCodeN	I[1] && glrBuf[2]==eRCodeL[1])
(glrBuf[0]==eRCodeH[2] &&	glrBuf[1]==eRCodeN	I[2] && glrBuf[2]==eRCodeL[2])
(glrBuf[0]==eRCodeH[3] &&	glrBuf[1]==eRCodeN	I[3] && glrBuf[2]==eRCodeL[3])
(glrBuf[0]==eRCodeH[4] &&	glrBuf[1]==eRCodeN	[[4] && glrBuf[2]==eRCodeL[4])){
switch(glrBuf[3]){		// Check received data code
case BTN	_A:	// When received data code is BTN_A.
	M_Play(BTN_A);	// Run BTN_A motion
	break;	
case BTN	_B:	// When received data code is BTN_B.
	M_Play(BTN_B);	// Run BTN_B motion
	break;	
}		
}		
for(i=0;i <ir_buffer_size;i++< td=""><td>) glrBuf[i]=0;</td><td>// IR receiving initialize</td></ir_buffer_size;i++<>) glrBuf[i]=0;	// IR receiving initialize
EIMSK = 0x40;		// Permit IR receiving
}		
}		
* BTN_A, BTN_B, BTN_C comm	and values are d	ietined in "Main.h".

If you make own function and source code instead of "M_Play()" function, you can play other program with IR remote controller.


3.10 Humanoid Robot Maze Escape

Let's make the maze escape program to use HUNO PSD sensor.

* Requirements

- RoboBuilder (Huno)
- RoboBuilder IR Remote Controller
- RS-232 Serial Cable(PC Cable)
- RBC Firmware Upgrade Tool

Let's check out PSD sensor principle and usage.

PSD is the sensor that reflected light angle is changed in accordance with distance. Let's look at the above left figure. If the object become more distant, 'L' value is increased while 'A' value is decreased. And 'X' value is also decreased. For this reason, output value is changing.

The above graph is the relationship between actual distance and PSD sensor voltage. In order to measure the distance, the formula is ;

```
Distance = 27.5 / ((5 * AD result value) / 1024)
```

This has included a little tolerance. But this is to judge the object detection, not a distance measure. Therefore, you can use from 15cm to 45cm distance without problem.

Let's check out the distance measurement program using PSD sensor and ATmega128 ADC(Analog Digital Converter),

// // Read Distance from PSD / "Adc.c"	
// Read Distance Irolli FSD / Adc.c	
void Get_AD_PSD(void)	
{	
float tmp = 0;	// variable for distance calculation
float dist;	// variable for distance calculation
EIMSK &= 0xBF;	// outer interrupt no.6 inactivate (IR receiving inactivate)
PSD_ON;	// PSD ON
delay_ms(50);	// Idle status until PSD Power On
gAD_Ch_Index = PSD_CH;	// ADC PSD channel selection
F_AD_CONVERTING = 1;	// AD convert finish flag set
ADC_set(ADC_MODE_SINGLE);	// select AD mode
while(F_AD_CONVERTING);	// AD convert finish flag clear
tmp = tmp + gPSD_val;	// save AD convert result
PSD_OFF;	// PSD Power Off
EIMSK = 0x40;	// IR receiving reactivate
dist = 1117.2 / (tmp - 6.89);	// PSD value calculate -> calculation by experiment
//dist = 27.5 / (5.0*(float)(gAD_val&0x	:03ff)/1024.0); // ➔ PSD calculation formula
if(dist < 0) dist = 50;	// check distance limit
else if(dist < 10) dist = 10;	
else if(dist > 50) dist = 50;	
gDistance = (BYTE)dist;	// save the result into gDistance
}	
//	
// A/D convert finish interrupt / "Main.c"	
//	
interrupt [ADC_INT] void adc_isr(void) {	// Run interrupt when AD convert is finished.
WORD i;	// Temp. variable
gAD_val = (signed char)ADCH;	// Save 10bit AD convert result
switch(gAD_Ch_Index){	// Select channel
case PSD_CH :	// PSD channel
gPSD_val = (BYTE) gAD_val; // Save into PSD variable
break;	
case VOLTAGE_CH	: // Battery voltage check channel
i = (BYTE) gA	AD_val;
gVOLTAGE =	l * 57;
break;	

```
case MIC_CH : // Mic. Input channel
if((BYTE)gAD_val < 230)
gMIC_val = (BYTE)gAD_val;
else gMIC_val = 0;
break;
}
F_AD_CONVERTING = 0; // AD convert flag clear)
}
```

As Get_AD_PSD() function is called, measured distance value is saved in gDistance variable.

In order to escape the maze, use humanoid basic motion "move forward", "move back ward", "turn left", "turn right" in "HunoBasic.h" file. Below is the method to escape the maze.

Example)

- 1. If there is no wall, move forward.
- 2. If the wall is detected, check left side. \rightarrow Turn (1)
- 3. If front and left side wall are detected, check right side. → Turn ②
- 4. If front, left and right side walls detected, go to opposite way. \rightarrow Turn (3)

In order to do this, robot should turn 90 degree. 90 degree turning is possible if HUNO's turn left or and turn right 3 times continuously in flat floor. In the above example, ① robot turns left 90 degree (turn left 3 times), ② 180 degree turn left (turn left 6 times) ③ 90 degree turn right (turn right 3 times), and move forward motion are needed.

Let's find out how HUNO motions are conducted through which functions. Below is the part of "M_Play (BYTE BtnCode)" function in "Comm.c".

```
void M_Play(BYTE BtnCode)
{
         // ① Check whether remote controller BTN_C is pressed, and run BasicPose
         if(BtnCode == BTN_C){
                  BasicPose(F_PF, 50, 1000, 4);
         }
         if(F_PF == PF1_HUNO){
                                                        // ② Check platform (Huno, Dino, Dogy)
                  switch(BtnCode){
                                                        // ③ Depends on the pressed button code
                            case BTN A:
                                     SendToSoundIC(7);
                                     gpT_Table= HUNOBASIC_GETUPFRONT_Torque;
                                     gpE_Table= HUNOBASIC_GETUPFRONT_Port;
                                                        = HUNOBASIC_GETUPFRONT_RuntimePGain;
                                     gpPg_Table
                                                        = HUNOBASIC_GETUPFRONT_RuntimeDGain;
                                     gpDg_Table
                                                        = HUNOBASIC_GETUPFRONT_RuntimelGain;
                                     gplg_Table
                                     gpFN_Table
                                                        = HUNOBASIC_GETUPFRONT_Frames;
                                     gpRT_Table
                                                        = HUNOBASIC_GETUPFRONT_TrTime;
                                     gpPos_Table
                                                        = HUNOBASIC_GETUPFRONT_Position;
                                     Motion.NumOfScene = HUNOBASIC_GETUPFRONT_NUM_OF_SCENES;
                                     Motion.NumOfwCK = HUNOBASIC_GETUPFRONT_NUM_OF_WCKS;
                                     break;
                            case BTN_B:
                            default:
                                     return;
                  }
         }
         else if(F_PF == PF1_DINO){
                                                        // ② Check Platform (Huno, Dino, Dogy)
                  switch(BtnCode){
                                                        // ③ Depend on the pressed button code
                            case BTN_A:
                            default: return;
                  }
         }
         else if(F_PF == PF1_DOGY){
                                                        // ② Check Platform (Huno, Dino, Dogy)
                  switch(BtnCode){
                                                        // ③ Depend on the pressed button code
                            case BTN_A:
                            default: return;
                  }
         }
         else if(F_PF == PF2){
                                                        // If platform is non-standard platform, return
                  return;
         }
         Motion.PF = F_PF;
         M_PlayFlash();
}
```

You can see that HUNO run motions are different in accordance with conditions.

case BTN_LR :	HUNOBASIC_TURNLEFT_xxx
case BTN_U :	 HUNOBASIC_WALKFORWARD_xxx
case BTN_RR :	 HUNOBASIC_TURNRIGHT_XXX
case BTN_D :	 HUNOBASIC_WALKBACKWARD_xxx
For move forward,	M_Play(BTN_U) function is called.

For turn left, M_Play(BTN_LR) function is called.

For turn right, M_Play(BTN_RR) is called.

For move backward, M_Play(**BTN_D**) is called.

Only different point is the using the sensor and algorithm instead of IR remote controller.

Let's see the C program that robot escapes the maze.

Γ

void Robot_Turn_Left_90(void){	// 90 degree left turn
M_Play(BTN_LR); M_Play(BTN_LR); M_Play(BTN_LR);	// left turn 3 times
}	
void Robot_Turn_Left_180(void){	// 180 degree left turn
M_Play(BTN_LR); M_Play(BTN_LR); M_Play(BTN_LR);	// left turn 5 times
M_Play(BTN_LR); M_Play(BTN_LR);	
}	
void Robot_Turn_Right_90(void){	// 90 degree right turn
M_Play(BTN_RR); M_Play(BTN_RR); M_Play(BTN_RR); M_Play(BTN	I_RR); // right turn 4 times
}	
void Robot_Forward(void){	// Move forward
M_Play(BTN_U);	// Move forward 2 times + right turn once
}	
void Robot_Backward(void){	// Move backward
M_Play(BTN_D);	// Move backward once
	// MOVE DACKWAI'U ONCE
}	
void User_Func_1(void){	// Maze escape function
while(1){	// Run continuously
Get_AD_PSD();	// Check front distance (1)
if(gDistance <= 12)	// If too close, Move backward

else if(gDistance <= 30){	// If there is wall, 90 degree turn left
Get_AD_PSD();	// Check left side distance (2)
<pre>if((gDistance <= 30)){ Robot_Turn_Left_180();</pre>	// If there is wall, 180 degree turn left
Get_AD_PSD();	// Check right side distance (3)
<pre>if((gDistance <= 30)) Robot_Turn_Right_90();</pre>	// If there is wall, 90 degree turn right
}	
}	
else Robot_Forward();	// If there is no wall, move forward
}	
}	
* Turn right or left run times could be different depends on t	he floor status.

In order to use the above program,

- 1. Include the above code in "main()" function in "Main.c".
- Open "DIO.c" file. Add user function in "case BTN_1" line.
 (In basic posture, "User_Func_1()" function runs if you press IR remote controller "1" button.)

case BTN_1	:	User_Func_1();

3. Press Shift + F9 button to compile it and download "hex" file into RBC box.

4. Press "1" button to run the user program after robot basic posture.

4. C Program Summary

4.1 Variables

A variable is just a named area of storage that can hold a single value (numeric or character). The C language demands that you declare the name of each variable that you are going to use and its type, or class, before you actually try to do anything with it. Variable value initially '0'.

Name	Description	Size*	Range*
char	Character or small integer.	1byte	signed: -128 to 127 unsigned: 0 to 255
short int (short)	Short Integer.	2bytes	signed: -32768 to 32767 unsigned: 0 to 65535
int	Integer.	4bytes	signed: -2147483648 to 2147483647 unsigned: 0 to 4294967295
long int (long)	Long integer.	4bytes	signed: -2147483648 to 2147483647 unsigned: 0 to 4294967295
bool	Boolean value. It can take one of two values: true or false.	1byte	true or false
float	Floating point number.	4bytes	+/- 3.4e +/- 38 (~7 digits)
double	Double precision floating point number.	8bytes	+/- 1.7e +/- 308 (~15 digits)
long double	Long double precision floating point number.	8bytes	+/- 1.7e +/- 308 (~15 digits)

Ex) int VariableNumber1;	// int type variable
int VariableNumber2 = 0;	// int type variable value '0'.
char VariableNumber3;	// char type variable
unsigned char VariableNumber4 = 255;	// char type variable value '255'

The Programming language C has two main variable types

Local Variables

Local variables scope is confined within the block or function where it is defined. Local variables must always be defined at the top of a block. When a local variable is defined - it is not initialize by the system, you must initialize it yourself. When execution of the block starts the variable is available, and when the block ends the variable 'dies'.

Global Variables

Global variable is defined at the top of the program file and it can be visible and modified by any function that may reference it. Global variables are initialized automatically by the system when you define them! If same variable name is being used for global and local variable then local variable takes preference in its scope. But it is not a good practice to use global variables and local variables with the same name.

4.2 Operators

Assignment (=)

The assignment operator assigns a value to a variable.

a = 5;

This statement assigns the integer value 5 to the variable a. The part at the left of the assignment operator (=) is known as the lvalue (left value) and the right one as the rvalue (right value). The lvalue has to be a variable whereas the rvalue can be either a constant, a variable, the result of an operation or any combination of these.

The most important rule when assigning is the right-to-left rule: The assignment operation always takes place from right to left, and never the other way:

a = b;

This statement assigns to variable a (the lvalue) the value contained in variable b (the rvalue). The value that was stored until this moment in a is not considered at all in this operation, and in fact that value is lost.

Consider also that we are only assigning the value of b to a at the moment of the assignment operation. Therefore a later change of b will not affect the new value of a.

Arithmetic operators (+, -, *, /, %)

The five arithmetical operations supported

Operations of addition, subtraction, multiplication and division literally correspond with their respective mathematical operators. The only one that you might not be so used to see is modulo; whose operator is the percentage sign (%). Modulo is the operation that gives the remainder of a division of two values. For example, if we write:

a = 11 % 3;

the variable a will contain the value 2, since 2 is the remainder from dividing 11 between 3.

Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)

When we want to modify the value of a variable by performing an operation on the value currently stored

in that variable we can use compound assignment operators:

expression	is equivalent to
value += increase;	value = value + increase;
a -= 5;	a = a - 5;
a /= b;	a = a / b;
price *= units + 1;	price = price * (units + 1);

Relational and equality operators (==, !=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use the relational and equality operators. The result of a relational operation is a Boolean value that can only be true or false, according to its Boolean result.

We may want to compare two expressions, for example, to know if they are equal or if one is greater than the other is. Here is a list of the relational and equality operators that can be used in C++:

==	Equal to
!=	Not equal to
>	Greater than
<	Less than
>=	Greater than or equal to
<=	Less than or equal to

Logical operators (!, &&, ||)

The operator! is the operator to perform the Boolean operation NOT, it has only one operand, located at its right, and the only thing that it does is to inverse the value of it, producing false if its operand is true and true if its operand is false. Basically, it returns the opposite Boolean value of evaluating its operand. For example:

!(5 == 5)	// evaluates to false because the expression at its right (5 == 5) is true.
!(6 <= 4)	// evaluates to true because (6 <= 4) would be false.
!true	// evaluates to false
!false	// evaluates to true.

The logical operators && and || are used when evaluating two expressions to obtain a single relational result. The operator && corresponds with Boolean logical operation AND. This operation results true if both its two operands are true, and false otherwise.

Bitwise Operators (&, |, ^, ~, <<, >>)

operator	equivalent	description
&	AND	Bitwise AND
	OR	Bitwise Inclusive OR
^	XOR	Bitwise Exclusive OR
~	NOT	Unary complement (bit inversion)
<<	SHL	Shift Left
>>	SHR	Shift Right

Bitwise operators modify variables considering the bit patterns that represent the values they store.

4.3 Control Statement

The if else Statement

This is used to decide whether to do something at a special point, or to decide between two courses of action. The following test decides whether a student has passed an exam with a pass mark of 45

if (result >= 45)

printf("Pass\n");

else

printf("Fail\n");

Each version consists of a test, (this is the bracketed statement following the if). If the test is true then the next statement is obeyed. If is is false then the statement following the else is obeyed if present. After this, the rest of the program continues as normal. If we wish to have more than one statement following the if or the else, they should be grouped together between curly brackets. Such a grouping is called a compound statement or a block.

```
if (result >= 45)
{        printf("Passed\n");
        printf("Congratulations\n")
}
else
{        printf("Failed\n");
        printf("Good luck in the resits\n");
}
```

The for Loop

The for loop works well where the number of iterations of the loop is known before the loop is entered. The head of the loop consists of three parts separated by semicolons.

The example is a function which calculates the average of the numbers stored in an array. The function takes the array and the number of elements as arguments.

```
float average(float array[], int count)
```

```
{ float total = 0.0;
int i;
for(i = 0; i < count; i++)
total += array[i];
return(total / count);
```

}

The for loop ensures that the correct number of array elements are added up before calculating the average.

The while Loop

The while loop repeats a statement until the test at the top proves false.

As an example, here is a function to return the length of a string.

```
int string_length(char string[])
{
     int i = 0;
     while (string[i] != '\0')
          i++;
     return(i);
```

}

The string is passed to the function as an argument. The size of the array is not specified, the function will work for a string of any size. The while loop is used to look at the characters in the string one at a time until the null character is found. Then the loop is exited and the index of the null is returned. While the character isn't null, the index is incremented and the test is repeated.

4.4 Functions

{

}

A C function definition consists of return value (void if no value is returned), a unique name, a list of parameters in parentheses (void if there are none), and various statements. A function with non-void return type should include at least one return statement:

```
<return-type> functionName( <parameter-list> )
```

```
<statements>
return <expression of type return-type>;
```

where <parameter-list> of n variables is declared as data type and variable name separated by a comma:

<data-type> var1, <data-type> var2, ... <data-type> varN

The following program shows use of a function pointer for selecting between addition and subtraction:

```
#include <stdio.h>
```

```
int add(int x, int y)
{
    return x + y;
}
int subtract(int x, int y)
{
    return x - y;
}
int main(int argc, char* args[])
{
    int foo = 1, bar = 1;
    printf("%d + %d = %d\n", foo, bar, add(foo, bar));
    printf("%d - %d = %d\n", foo, bar, subtract(foo, bar));
    return 0;
}
```

4.5 Arrays and Pointers

To fully understand the workings of C you must know that pointers and arrays are related.

An array is actually a pointer to the 0th element of the array. Dereferencing the array name will give the 0th element. This gives us a range of equivalent notations for array access.

Array Access	Pointer Equivalent
arr[0]	*arr
arr[2]	*(arr + 2)
arr[n]	*(arr + n)

There are some differences between arrays and pointers. The array is treated as a constant in the function where it is declared. This means that we can modify the values in the array, but not the array itself, so statements like arr ++ are illegal, but arr[n] ++ is legal.

Since an array is like a pointer, we can pass an array to a function, and modify elements of that array without having to worry about referencing and de-referencing. Since the array is implemented as a hidden pointer, all the difficult stuff gets done automatically.

A function which expects to be passed an array can declare that parameter in one of two ways.

int arr[]; or int *arr;

Either of these definitions is independent of the size of the array being passed. This is met most frequently in the case of character strings, which are implemented as an array of type char. This could be declared as char string[]; but is most frequently written as char *string; In the same way, the argument vector argv is an array of strings which can be supplied to function main. It can be declared as one of the following.

```
char **argv; or char *argv[];
```

4.6 Structure

A structure type is usually defined near to the start of a file using a typedef statement. typedef defines and names a new type, allowing its use throughout the program. typedefs usually occur just after the #define and #include statements in a file.

Here is an example structure definition.

```
typedef struct {
char name[64];
char course[128];
int age;
int year;
```

} student;

This defines a new type student variables of type student can be declared as follows.

student st_rec;

Notice how similar this is to declaring an int or float. The variable name is st_rec, it has members called name, course, age and year.

Each member of a structure can be used just like a normal variable, but its name will be a bit longer. To return to the examples above, member name of structure st_rec will behave just like a normal array of char, however we refer to it by the name

st_rec.name

Here the dot is an operator which selects a member from a structure.

Where we have a pointer to a structure we could dereference the pointer and then use dot as a member selector. This method is a little clumsy to type. Since selecting a member from a structure pointer happens frequently, it has its own operator -> which acts as follows. Assume that st_ptr is a pointer to a structure of type student We would refer to the name member as

st_ptr -> name

As we have seen, a structure is a good way of storing related data together. It is also a good way of representing certain types of information. Complex numbers in mathematics inhabit a two dimensional plane (stretching in real and imaginary directions). These could easily be represented here by

typedef struct {
 double real;
 double imag;
} complex;

doubles have been used for each field because their range is greater than floats and because the majority of mathematical library functions deal with doubles by default.

In a similar way, structures could be used to hold the locations of points in multi-dimensional space. Mathematicians and engineers might see a storage efficient implementation for sparse arrays here.

Apart from holding data, structures can be used as members of other structures. Arrays of structures are possible, and are a good way of storing lists of data with regular fields, such as databases.

Another possibility is a structure whose fields include pointers to its own type. These can be used to build chains (programmers call these linked lists), trees or other connected structures. These are rather daunting to the new programmer, so we won't deal with them here.

Command Po	10bit		Command	Extended									Config. Comnand										Command	Bbit		
Position Read	Position Move	Motion DATA Read	Motion DATA Write	I/O Read	I/O Write	Runtime I gain Set	Runtime Speed Set	l gain Read	I gain Set	Boundary Read	Boundary Set	Over Load Read	Over Load Set	SPEED Read	SPEED Set	ID Set	Runtime P,D gain Se	P,D gain Read	P,0 gain Set	Baudrate Set	Break wCK	Wheel wCK	Passive wCK	Status Read	Syncronized Position Move	Position Move
			•						-	-	-		0xFF													header
×										7 0~30										ID	31	6 0~30	ID	mode ID 5 0~30	0~4 31	Torg ID
201	200	151	150	101	100	24	23	22	21	18	17	16	15	14	13	12	11	10	9	mode 8	2 X	3=CCW speed	1 X		+	targe; position
0~253	0~253	×	Motion Coun 0~8	×	×	l gain 0~10	speed	×	0~10	×	new U boun 0~254	×	new overcur 33~199	×	speed	new ID 0~254	P gain 1~254	×	new P gain 1~254	new baudrate 0~191		ed (note1)			+1 ID0 target	
= byte4	Torq 0~254	= byte4	nt Motion Omd 0~254	= byte4	t = byte4	l gain 0~10	accel 20~100	= byte4	= byte4	= byte4	new L bound		= byte4	= byte4	accel 20~100	= byte4	D gain 0~254	= byte4	n new D gain 0~254	te = byte4					ID1 target 0~254	1
check sum (note6)	target(H3)	(note3)			<u> </u>			L	-	-	ā	(note3)								check sum					ID2 target 0~254	
	3) target(L7) 0~1023		1 Motion Cmd 0~254						Π																ID3 target 0~254	
	x (note7)		2 Motion DATA 2 0~254						T																ID4 target 0~254	
			2 Motion Cmd 0~254																						ID5 target 0~254	
			3 Motion DATA 0~254						T																ID6 target 0~254	
			1	_																					··· lastiD	
			0																						-1 target la	
			(note5)																					_	0~254	
																									check sum (note2)	
position(H3) p 0~1023	position(H3) p 0~1023	Motion Count 0~8	Motion Count 0~8	Output Value	Output Value	P gain		l gain	new Igain	U bound	new U bound	overcur T	new overcur T	Speed	new Speed	new ID	P gain	P gain	new P gain	new baudrate	ID	Rotation Count	byte3	current 0~254		current position 0~254 0~254
position(L7))23	position(L7))23	Motion Coun	Motion Coun	8bitAD	Output Value	D gain		l gain	l gain	L bound	new L bound	overcur T	new overcur T	Accel	new Accel	new ID	D gain	D gain	new D gain	new baudrate	position 0~254	position 0~254	position 0~254	position 0~254		position 0~254

Appendix A. wCK Communication Protocol